NTHU Physics Colloquium, 2/27/2008

Laser Spectroscopy of Exotic Helium Isotopes

王立邦 清華大學物理系

Neutron Halo

- Discovery of neutron halo change our common view of nuclear structure
- How is it discovered?

Nuclear Interaction Cross Section

Nuclear Chart

Neutron number

Neutron-rich ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0+	1	$\alpha + 2n$
He-8	119 ms	0 ⁺	2	α + 4n

Charge radius probes "valence neutron correlation"

Methods of Measuring Charge Radii

Electron scattering

- R=1.21×A^{1/3} fm for non-deformed nuclei
- Can NOT apply to unstable (short-lived) nuclei

Neutron-rich ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0+	1	$\alpha + 2n$
He-8	119 ms	0 ⁺	2	α + 4n

Charge radius probes "valence neutron correlation"

Nuclear Force

- Fundamental theory QCD not calculable in low-energy regime
- Modern nuclear models use "effective potential"

- Long range (~2 fm) attraction: one-pion exchange
- Intermediate range (~1 fm) attraction: two-pion exchange
- Short range repulsion: hard-core effect, quarks are fermions

Neutron Halo Nuclei 6He and 8He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0+	1	$\alpha + 2n$
He-8	119 ms	0+	2	$\alpha + 4n$

Charge Radius of Helium Isotopes

- Charge radii ⁴He < ⁶He ~ ⁸He
- Electron scattering, not possible for ⁶He, ⁸He
- Elastic proton scattering involves strong interaction, cannot separate proton and neutron
- No "Poisson equation" for QCD to relate strong force to nucleon distribution
- Atomic isotope shift, measure the difference

	³ He	⁴ He	⁶ He	⁸ He
Theory	1.954(5)	1.662(5)	2.05(1)	1.99(1)
Electron scattering	1.96(3)	1.676(8)		
Proton scattering		1.79(4)	2.09(9) 1.95(8)	1.80(7) 1.56(6)
Atomic Isotope shift	1.964(1)	1.673(1)	?	?

Atomic Isotope Shift

Isotope Shift $\delta v = \delta v_{MS} + \delta v_{FS}$

Field (Volume) Shift

Atomic Theory of Helium

Gordon W.F. Drake (Can. J. Phys 84, 83 2006)

- Non-relativistic wave functions from variational calculations
- Perturbation theory for relativistic corrections, QED, finite nuclear mass and nuclear charge radius
- QED terms "cancel" in isotope shift

Experimental confirmation

- Total transition frequency
- ⁴He Fine structure splitting
- ³He-⁴He Isotope shift + HFS

Atomic Isotope Shift

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm:

⁶He - ⁴He : $\delta v_{6,4}$ = 43196.202(16) MHz + 1.008 (<r²>_{He4} - <r²>_{He6}) MHz/fm² ⁸He - ⁴He : $\delta v_{8,4}$ = 64702.410(70) MHz + 1.008 (<r²>_{He4} - <r²>_{He8}) MHz/fm² G.W.F. Drake, Univ. of Windsor, *Nucl. Phys. A737c, 25 (2004)*

100 kHz error in IS $\leftarrow \rightarrow \sim 1\%$ error in radius

Helium Energy Level

- For noble gas atom, first excited state too high for laser excitation, (VUV)
- Exp. on metastable state
- RF discharge by electron collision

A glow discharge He gas cell

Spectroscopy of ⁶He

Technical challenges:

- Short lifetime, small samples (~ 10⁶ atom/s available)
- Difficult spectroscopy (Metastable efficiency ~ 10⁻⁵)
- Precision requirement (100kHz = Doppler shift @ 0.04 m/s)

Solution:

Spectroscopy with cooled atoms in a magneto-optical trap

- ✓ High resolution: cold atoms, Doppler width largely reduced
- High sensitivity: capable of detecting a single atom

⁶He Production

Experimental Setup

Single ⁶He Atom Detection

- Capture efficiency ~ 2×10⁻⁸ single atom detection necessary!
- Imaging system and reducing background
- ♦ ⁶He capture rate ~ 150 per hour

Spectroscopy of Trapped Atoms

- Light shift and Zeeman shift
- Heating and cooling effect: asymmetric line shape \rightarrow single γ recoil: 440 kHz for ⁶He, 330 kHz for ⁸He
- Probing laser power must be very low!

M. Zhu, C. Oates, J. Hall, Opt. Lett., 18,1186 (1993)

Frequency Scanning Strategy

- Two frequency-detuning trap (hot and cold)
- Balance between the two probe beams

Systematic Effect Study

⁴He Fine Structure

Fine structure splitting, MHz

References

- Lamb '57: I. Wieder and W.E. Lamb, Jr., Phys. Rev. 107, 125 (1957)
- Pipkin '78: P. Kramer and F. Pipkin, Phys. Rev. A18, 212 (1978)
- Metcalf '86: D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. A33, 1725 (1986)
- This work: P. Mueller, L.-B. Wang, G.W.F. Drake, K. Bailey, R.J. Holt,

Z.-T. Lu, and T.P. O'Connor, Phys. Rev. Lett. 94, 133001(2005)

⁶He Single-Atom Spectroscopy

Point Proton Radius

Experimental mean square charge radii: Proton $\langle R_p^2 \rangle^{1/2} = 0.895(18)$ fm, [Sick, 2003] Neutron $\langle R_n^2 \rangle = -0.120(5)$ fm², [Kopecky, 1997]

Comparison with Theories

Where to find ⁸He?

GANIL Caen, France

Other possible sites:

TRIUMF in Canada ISOLDE @ CERN NSCL @ MSU

⁸He @ GANIL

Atom Trapping of ⁶He & ⁸He at GANIL

Isotope Shift and Field Shift : J - Dependence?

Experimental Uncertainties and Corrections

		⁶ He	⁸ He
C	Photon Counting	8 kHz	32 kHz
Statistical	Laser Alignment Drift	2 kHz	12 kHz
StatisticalLaser Anglinent Drift2 kFReference Laser Drift2 kFProbing Power Shift0 kFZeeman Shift30 kFNuclear Mass15 kF	2 kHz	24 kHz	
S startin 5	Probing Power Shift	0 kHz	15 kHz
Systematic	Zeeman Shift	30 kHz	45 kHz
	Nuclear Mass	15 kHz	74 kHz
	TOTAL	35 kHz	97 kHz
Corrections	Recoil Effect	+110(0) kHz	+165(0) kHz
	Nuclear Polarization	-14(3) kHz	-2(1) kHz

⁶He & ⁸He RMS Point Proton Radii

⁶He & ⁸He Charge Radii

AIP Physics News Update, #851-2, Dec. 2007

Conclusion

- Hypothesis of neutron-halo structure confirmed model-independently
- Demonstrated trap spectroscopy with single atom sensitivity

Outlook

- To further improve the precision and compare with theories:
 Nuclear polarizability and MEC (meson exchange current) correction necessary at this level of precision
- Need more precise value of proton radius
- Need more precise value of helium-4 radius
- See also recent laser spectroscopy work on Li-11 at GSI/TRIUMF
- New He-8 mass measurement in Penning trap @ TRIUMF in Dec. '07

Collaboration

K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, P. Mueller,
T. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, I. Sulai, X.D. Tang Argonne National Laboratory, USA

M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari et al.- GANIL, Caen, France

G. W. F. Drake - University of Windsor, Canada

L.-B. Wang - Los Alamos National Laboratory, USA

GFMC – What happens to the Core?

Meson-Exchange Current Correction

- Mesons mediating strong force carry electric charge
- Expected to be different among ⁴He, ⁶He and ⁸He
- In H–D isotope shift, MEC correction ~0.2% of deuteron charge radius
- Small but NOT negligible at this precision
- \Rightarrow further theoretical investigation necessary

$$< r_c^2 > = < r_p^2 > + \left[< R_p^2 > + \frac{3}{4} \frac{1}{M_p^2} \right] + \frac{N}{Z} < R_n^2 > + < r^2 >_{MEC}$$

Cluster Models for ⁶He

- Assume α core not affected much by the two neutrons
- Empirical form of n-n, n- α potential, parameterized by scattering phase shift
- Cluster models
- Triton + triton channel used

Muonic Atom X-ray Spectroscopy

 $\begin{array}{l} & m_{\mu}/m_{e} \sim 200 \\ & \text{Bohr radius} \quad a_{0} \sim \frac{1}{m_{e}} \\ & \text{Energy level} \quad E_{n} \sim -\frac{m_{e}}{n^{2}} \\ & \text{Wave function } \Psi(r) \sim a_{0}^{-3/2} e^{-r/a_{0}} \\ & \text{Energy shift due to nuclear size} \\ & \Delta_{|} \Psi(0)|^{2} \delta \langle r^{2} \rangle \\ & \text{Sensitivity} \sim (m_{\mu}/m_{e})^{3} \end{array}$

4% in metastable state $\star \delta v(2S_{1/2}-2P_{3/2})=1.813 -0.102 < r^2 > eV$

- ♦ 811.68(15)nm $\Rightarrow <r^2 > 1/2(^4\text{He}) = 1.673(1) \text{ fm}$
- Carboni *et al.*, Nucl. Phys. **A**278, (1977)
- ♦ Muonic hydrogen in $PSI \Rightarrow$ proton radius

Atomic Theory of Helium

Solve 3-body Schrödinger Equation

	Contribution	Magnitude				
(Nonrelativistic energy	Z ²	4	31.1	- 41	
Error <10 kHz	Relativistic correction	$Z^4 \alpha^2$	9×10 ⁻⁴	°H	e	10
	Anomalous magnetic moment	$Z^4 \alpha^3$	7×10 ⁻⁴	$2^{3}P_{010}$	_ 1	1
	Mass polarization (SMS)	Z²μ/M	5×10-4	012	- 7	Ŧ
	Second-order mass polarization	Z²(μ/M)²	8×10 ⁻⁸			
_ (Finite mass correction (NMS)	$Z^4 \alpha^2 \mu/M$	1×10 ⁻⁷			
Error ∼10 MHz	QED correction (Lamb shift)	$Z^4 \alpha^3 ln \alpha$	6×10 ⁻³			
	Finite Nuclear Size	$Z^4 (R_N/a_o)^2$	2×10 ⁻⁹			

2³S₁

- Total transition frequency \rightarrow Lamb Shift
- Isotope shift → Nuclear radius
- Fine structure splitting \rightarrow Fine structure constant 1kHz \rightarrow accuracy 1 part in 10⁸

Binding Energy of Light Nuclei

Monte Carlo Calculation

Argonne v18 two-body potential:

$$H = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$$
S. Piep
Rev. N

S. Pieper and R. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53(2001)

- Coupling strength to fit NN scattering data
- Problem: binding energy of most light nuclei too small

In nuclei A>3, excitation of the excited state of nucleons
Parameters to fit ³H, ³He binding energy

• Isospin dependant, Neutron-rich light nuclei, e.g. ⁶He

Nuclear-Medium Correction

- Electron does NOT see the bare nucleus \Rightarrow Nuclear polarizability
- The energy shift in the helium $2^3S_1 3^3P_2$ transition:

$$\delta v = 7.08 \ kHz \times \frac{\alpha_E({}^{6}He) - \alpha_E({}^{4}He)}{\alpha_E({}^{2}H)} \quad \text{G.W.F. Drake, private communication}$$

$$\alpha_E = \frac{2\alpha}{3} \sum_{N \neq 0} \frac{\left| \left\langle N \left| \vec{D} \right| 0 \right\rangle \right|^2}{E_N - E_0} \qquad \alpha_E + \beta_M = \frac{1}{2\pi^2} \int_{0}^{\infty} \frac{\sigma_{\gamma}(\omega)}{\omega^2} d\omega$$
Baldin-Lapidus sum rule

•
$$\alpha_{E}(^{6}\text{He}) \sim 0.8 \text{ fm}^{3} \text{ by Bacca}$$

• $\alpha_{E}(^{2}H) = 0.63 \text{ fm}^{3} \text{ by Friar}$

 10 kHz shift expected

389 nm Spectroscopy Laser Setup

