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Talwan Energy Supply & Demand

 Taiwan total oil and natural gas reserve is estimated at ~500
million Barrels of Oil Equivalent (BOE)

e Taiwan consumes ~600 million BOE energy in 2000. 98% of
Taiwan energy supply is imported — almost completely relying
on world energy supply.

e Taiwan electricity supply: ~75% by fossil energy resources
(coal 43%, natural gas 19%, oil 6%, cogeneration 7%); ~21%
by nuclear fission power

 How will Taiwan get adequate energy supply?
- Taiwan aims to achieve ~30% energy supply from
renewables (wind power, solar power, hydropower,
geothermal, ocean wave & tidal power, biomass) by 2050
- How about the other 70%?



World Population & Energy Demand
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1 ton of o1l equiv. = 7.4 barrels of oil equiv.



World Energy Supply & Demand
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At our rate of energy use, experts predict
an energy shortage in about 20-40 years.



World Energy Supply & Demand

 World energy use is ~ US$ 3T in 2004 (~US$ 10T in 2007).
More than 90% of energy use is supplied by fossil energy
resources (coal, oil, natural gas)

 Running out of fossil fuel (oil first)

* Fossil energy consumption has severe impact on climate
and environment (CQO,, green house effect, global warming)

* Energy & environment problems are worsened by growing
world population; world energy need will double by 2050;
CO, concentrations will double by 2100

* Nuclear fusion is a climate and environment friendly
option for replacing fossil fuels!



Present CO, levels higher than at any time
during the past 420,000 years
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- Even with the adoption of all new technologies for fossil electical
energy production, CO; concentrations will double by 2100
- COz increases can be avoided only by non-fossil energy sources



Nuclear Fusion

Fastest fusion reaction Is:
D+T=> n (14 MeV) + “He (a-particle, 3.5 MeV)
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For first gemeration fusion reactors

E = mc? (Mass lost fraction = 0.38%)
Energy gain = 450 Needs a plasma at

20% goes to sustain fusion T.,, =~ 10 keV (108 K)
80% goes to generate electricity



Different Fusion Reactions

Reaction Ignition Temperature Output Energy
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SHe supply is very limited, but can be mined from the Moon.



ADVANTAGES OF FUSION

Abundant Supply of Fuel (deuterium and

tritium)
No Risk of Nuclear Accident
— No reactor meltdown possible

— Large uncontrolled release of energy impossible
Minimal or No High Level Nuclear Waste

Careful material selection should minimize waste
caused by neutron activation

No Air Pollution of Greenhouse Gases

Reaction product is Helium and neutron



Abudant Supply of Fusion Fuel

e Deuterium isotope = 1/ 7000 of hydrogen atoms in water
and can be extracted at a negligible cost (= $1/gr)

e Deuterium in 1 gallon of water has the same energy as 300
gallons of gasoline, if burned in a fusion D-T reactor

o Tritium Is not present in Nature (13 year half-life), but
slightly more than 1 tritium atom can be created for
each DT neutron in a lithium “breeding blanket”

Li® + n->T + He* (7% natural Li)
Li”+n->T+ He*+n (93% natural Li)



FUEL NEEDED FOR ONE YEAR OF POWER
PLANT OPERATIONS (1000 MWe)

SRS o (00 000 TOMNNES
| 21 070 RAILCAR LOADE)

S oA ey 1,300,000 TONNES
ot (10,000,000 BARAELS)

~30 TONNES U0
{ONE AAILCAR LOAD)

CIER]

~0.0 TONNES D
y  [OME PICKUR TRUCK)

Fusion energy release from 1 gm of DT fuel equals
the energy from 2400 gallons of oil



Fusion Power Plant
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Three Basic Ways to Achieve Fusion
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Main Difficulties in Fusion Research

* The fusion power created must be larger than the
power required to keep the D-T fuel at high temperature

=» near-term scientific goal of a “burning plasma”

 The mechanical structure of the device must be
capable of withstanding damage due to plasma
bombardment and radiation damage due to 14 MeV
neutrons

=» long-term engineering goal of improved
materials



Requirements for Fusion Burning

“Burning” means self-heating by D-T alpha particles

alpha heating rate = plasma energy loss rate

constant « n> T2 = 3nT/ T,

[where ¢ Is the plasma energy confinement time]

NeTeT-~ (10%cm3) « (20 keV) « (5 sec) -- MFE

or NneTeTz = (10%cm3) e« (20 keV) « (0.5 nsec) -- IFE
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What Have We Done in Magnetic Confinement
Research in Past 50 Years ?

Model A Stellarator of 1953
(with Lyman Spitzer)

n < 10 cm-3

T~10eV Tg~1sec
Te~ 10 psec NnTTg still needs a factor

=~ 5 from burning condition



Early Ideas for Magnetic Fusion Research

magnetic mirror linear pinch

Plasma

stellarator

field reversed configuration



The Winner so Far: the Tokamak

Tokamak = toroidal magnetic chamber (Russian acronym)

Ohn;’ilc-Hea;ting Toroidal-Field
Poloidal-Field Magnet b it Magnet

Magnetic
Plasma Field Line
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DIII-D with Plasma and No Plasma




World Fusion Program Progress
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ITER — A Burning Plasma Fusion Reactor (~2015)

30m tall & 30m diameter

Design

Goals:

e Q =10
(burning
plasma)

e 0.5GW
fusion power
e 500 sec

long pulse

°* NO
electricity
output

Formal ITER construction agreement (cost 5B Euro) was signed by 7 parties in

2006 (total cost over 30 yrs 1s estimated at 10B Euro).

Taiwan 4th Nuclear Power Plant construction costs ~ $6B for 1.375 GW power
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Fusion Research Spending

ITER
— Agreement signed in June 2005 with total cost ~$13B
over 10 yrs, to be built in France
— Participants: EU(40%) , Japan(10%), US(10%), Korea
(10%), Russia(10%), China(10%), India(10%)
representing ~ % of world population
2006 US annual magnetic fusion budget ~ $300M
— One space shuttle launch costs ~$500M

— Japan & EU each spends more than US
— Developing nations increase fusion funding greatly since 2000

Korea’s fusion imnvestment
— K-STAR tokamak built mainly by Korean industries.
Total investment ~ $ 1B during 1995-2005 including
industry investment

Taiwan’s fusion & plasma science investment:
none or negligible now! Now is the time for
Taiwan to participate and grow!



Korea Jump-Starts Fusion Program in 1995

d Approval of the KSTAR project in 1995
O  Mid-entry strategy
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Korean industries in KSTAR
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http://www.poscon.co.kr/

Fusion Energy Research in Taiwan

* Present Taiwan’s fusion & plasma science
investment: none or negligible!

* Should Taiwan continue to ignore fusion research
when nations representing more than % of world

population are working on fusion energy research?
— Assuming that ITER succeeds in producing output
energy S -10 times of the input energy, it’d be too late
for Taiwan to catch up in fusion technology if Taiwan
does not have a fusion energy research program now.

* If Korea can afford to work on fusion energy
research, why can’t Taiwan?

— YES! Taiwan can afford to initiate a moderate fusion
energy research program.



Establish a Moderate Taiwan Fusion
Energy R&D Program

 Initial Phase: Start a Taiwan Fusion Facility

with fusion plasma science program:

— develop expertise & manpower in fusion-related
plasma theory and modeling, and small basic
plasma experiments

— establish international collaborations in
tokamak fusion theory and experiments (e.g.,
with US, Japan, Korea)

— participate in KSATR experiments (e.g., US
contributes $4M and Japan contributes $6M to
KSTAR in plasma diagnostics, particle heating

source in exchange of participating in KSTAR
experiments)



In conclusion,
it is very important to initiate a
modest fusion energy research
program in Taiwan!

For training scientific and
engineering personnel in

anticipation of success of ITER

Thank you!
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NCKU Plasma and Space Science Center
].5%*14’—3\' grq’?’ ‘.‘_—r_ﬁ"‘g‘:"\*J

e Established in August, 2006
 Expertise and capability in:

— Theory, simulation & modeling:
plasma theories for space and astrophysical plasmas,

magnetic fusion, and laboratory plasma devices

— Laboratory plasma experiment:
devices for basic plasma sciences, plasma diagnostics
and experiments, tokamak fusion experiments

— Space science
satellite in-situ and remote sensing instruments for
observing space plasmas, etc.

— astrophysics:
solar and astrophysical plasmas, ground-based
telescopes, etc.



Plasma Science Division

Initial experimental efforts:
— Build up plasma diagnostics capability & expertise
— Participate in diagnostics development for tokamak
experiments in collaboration with collaborators
Cooperation agreement with international collaborators
— Personnel exchange: students, staff
— Recruit visiting professors in teaching & research
Plasma teaching lab
— Duplicate a teaching plasma lab at PPPL
Magnetic mirror plasma device
— Build magnetized plasma devices for studying basic
plasma physics relevant to fusion research
Experimental personnel
— Hire experimental plasma physicists, lab engineers, and
— Enroll graduate and undergraduate students



Space Science Division

Initial experimental efforts:

— Develop instrument building capability & expertise

— Provide scientific instruments for NSPO needs
International cooperation

— Partners: Japan, Canada, USA

— Personnel exchange: students, staff

— Recruit visiting professors in teaching & research
Instrument lab

— Clean room

— Plasma chamber

— Test equipments, etc.
Experimental personnel

— Hire lab staff and enroll students

— Hire space physicists in data analysis, instrument,

satellite mission



Finally, a graduate Institute of Space,
Astronomy and Plasma Sciences
(ISAPS) (=72~ & 7% fﬁ%ﬁiﬁ/ﬁﬁ % ET)
will begin student enrollment 1n Sept.,
2008.

Thank you!
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