

Synthesis and Control of Single Cycle Optical Pulses

for Quantum Control and Attosecond Physics

Andy Kung (孔慶昌)

Physics Colloquium, Physics Department, National Tsing Hua University April 8, 2009

Single-cycle and sub-cycle pulses

300 nm = 1 fs

single-cycle pulse \equiv attosecond pulse

Why we are interested in it

How we do it

What we have done

What could we do with these light pulses

Laser pulses got shorter over the years

Peak intensity increased

Ultrafast science

High field physics

Generating single-cycle pulses – in pursuit of attosecond pulse timing

PHYSICS TODAY October 2004

Search and Discovery

Attosecond Bursts Trace the Electric Field of Optical Laser Pulses The familiar textbook sketch of light's oscillating electric field can now be drawn directly from measurements.

GOAL

Synthesize various forms of ultrashort pulses

in the optical frequency (10¹⁵ cps) regime

Basic Concepts

Jean Batiste Joseph Fourier (1768-1830)

A revolutionary article

$$\varphi(y) = a\cos\frac{\pi y}{2} + a'$$

Multiplying both sides by co

y = +1 yields:

$$a_i = \int_{-1}^1 \varphi(y) \cos(2i +$$

-Joseph Fourier, Mémoire sur la pre

In these few lines, which are surprisin mathematics and physics. Although si

MÉMOIRE

SCR LA

PROPAGATION DE LA CHALEUR

DANS LES CORPS SOLIDES,

PAR M. FOURIER (*).

Présenté le 21 décembre 1807 à l'Institut national.

Nouveau Bulletin des Sciences par la Société philomathique de Paris, t. I, p. 112-116, nº 6; mars 1808. Paris, Bernard.

oseph Fourier initiated the tudy of Fourier series in order solve the heat equation.

gly revolutionized both niel Bernoulli and Gauss,

What is a single cycle optical pulse

(a) Monochromatic light: sinusoidal wave (b) Beating of two waves, ω_1 and ω_2

What is a single cycle optical pulse

(c) Many waves propagating to form a wave packet (left)

(d) Ultimate wavepacket is a single-cycle and sub-cycle pulse train (right)

Phase coherence

$$E(t) = \sum_{n} E_{n}(t) = \sum_{n} A_{n}(t) \cos(\omega_{n}t + \phi_{n})$$

(a) In phase $\phi_n = n\phi_o$ (b) Random phases

Correlation between time and frequency $x(t-t_0) \leftarrow FT \longrightarrow e^{-j\omega t_0} X(\omega)$ Fourier transform: $X(\omega) = \int_{0}^{\infty} x(t)e^{-i\omega t} d\omega$ $\frac{4\pi}{T} = 2\omega$ $\frac{1}{2}$ Time Frequency 2.6 fs 12,820 cm⁻¹ , 780 nm

Carrier frequency

$$\omega_{c} = \frac{\int_{0}^{\infty} \omega \left| E(\omega) \right|^{2} d\omega}{\int_{0}^{\infty} \left| E(\omega) \right|^{2} d\omega}$$

single cycle

 $\Delta \omega \geq \omega_c$

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan

Things to remember

attosecond single-cycle optical pulses:

- 1. has a very broad spectrum more than one octave
- 2. spectrum has perfectly phased spectral components
- 3. needs stable and controllable carrier-envelope phase

1 fs ↔ 300 nm

How to make a single-cycle pulse

A. Directly from a laser – phase-locking

- B. From atoms high harmonic generation
- C. From molecules molecular modulation

C

Bandwidth expansion by molecular modulation

S. E. Harris and A. V. Sokolov, Phys. Rev. A **55**, R4019 (1997); S. E. Harris and A. V. Sokolov, Phys. Rev. Lett. **81**, 2894 (1998).

Bandwidth expansion by molecular modulation

Detuning δ : adiabatic excitation, collinear sidebands

Bandwidth expansion by molecular modulation

$I = 10GW / cm^2$

Huang et.al. PRA 74, 063825 (2006)

195 nm

1.06µm

What we have done

Bandwidth expansion by molecular modulation

in room temperature H_2

Raman sideband generation

陳蔚然

Raman sidebands generated

Total spectral span >70,000 cm⁻¹ (~500 as)

PRA 74, 063825 (2006)

Comparison of experiment with simulation

Multiple quantum paths interference

Four wave mixing: $\omega_5 + \omega_7 - \omega_4 = \omega_8$

 $\omega_6 + \omega_7 - \omega_5 = \omega_8$

M. Y. Shverdin et al. PRL 94, 033904 (2005)

Academia Sinica, Taiwan

Generating attosecond pulses

Bandwidth expansion by molecular modulation

Raman sideband generation

Phase Optimization

Multiple quantum paths interference in four wave mixing

7=6+6-5
=6+5-4
=5+5-3
=6+4-3
=5+4-2
=6+3-2
=5+3-1
=6+2-1
=4+4-1

Verify single-cycle pulse train with constant CEP

Cross Correlation of Single Cycle Pulse Train

Autocorrelation is standard way to measure ultrafast pulsewidth. However it could not be done here because of the wide bandwidth.

(1,2,3)

Solution: Correlation using pulses formed by the sidebands themselves.

Synthesize two pulses from the subsets of sidebands and electronically delay one pulse with respect to the other. Measure the resulting four-wave signal with a photomultiplier.

$E(t) = \sum_{n} E_{n}(t) = \sum_{n} A_{n}(t) e^{j(\omega_{n}t + \phi_{n})}$ $E(t) = \sum_{n} E_{n}(t) = \sum_{n} A_{n}(t) e^{j(\omega_{n}t + \phi_{n})}$ $E(t) = \sum_{n} E_{n}(t) = \sum_{n} E_{n}(t) = \sum_{n} E_{n}(t) e^{j(\omega_{n}t + \phi_{n})}$

In molecular modulation
$$\omega_n = \omega_{ceo} + n\omega_m$$

 $\phi_n = \phi_0 + n\phi_m$
 $E(t) = e^{j(\omega_{ceo}t + \phi_0)} \sum_n A_n(t) e^{jn\omega_m(t + \phi_m/\omega_m)}$
 $CEP = \omega_{ceo}t + \phi_0$

賴建任

Carrier-Envelope Phase $CEP = \Delta \phi = \delta t + \phi_0$

 $\Delta \phi = \phi_{CE} = absolute.phase$ $\delta t = \phi_{CEO} = CE.offset.phase$ $\phi_0 = static.phase$

Requires that the relative phase between adjacent sidebands be fixed:

10 time (fs) 10 15

25

time (fs)

Constant carrier envelope phase

Raman Order	nm	cm⁻¹	4 wave- mixing order
	∞	0	
-3	2406	4155	
-2	1203	8310	1
-1	802	12465	2
0	602	16620	3
1	481	20775	4
2	401	24930	5
3	344	29085	6
4	301	33240	7
5	267	37395	8
6	241	41550	9
7	219	45705	10
8	201	49860	11
9	185	54015	

Cross Correlation of Single Cycle Pulse Train

But, although the carrier-envelope offset phase ϕ_{ceo} is zero,

the static phase ϕ_0 varies from one nanosecond laser pulse to the next

In the Raman process, there are two input fields $E_p(t)$ and $E_{p+1}(t)$ $E_p(t) = A_p(t)e^{j(\omega_p t + \phi_p)}$ $E_{p+1}(t) = A_{p+1}(t)e^{j(\omega_{p+1} t + \phi_{p+1})}$

$$CEP = \phi_0 = (p+1)\phi_p - p\phi_{p+1}$$

For our case, 802 nm $E_3(t) = A_3(t)e^{j(\omega_3 t + \phi_3)}$ 602 nm $E_4(t) = A_4(t)e^{j(\omega_4 t + \phi_4)}$

$$CEP = \phi_0 = 4\phi_3 - 3\phi_4$$

Miaochen Zhi and A. V. Sokolov, OL 32, 2251 (2007)

ĺ.

Th

S

Our solution: Use the first two terms of the Fourier series

e. let
$$p=1$$

hen, $\phi_m = \phi_2 - \phi_1$
 $\phi_0 = 2\phi_1 - \phi_2$
hnce $\omega_2 = 2\omega_1$ then, $\phi_2 = 2\phi_1 + \xi$
 $\phi_0 = 2\phi_1 - \phi_2$
 $= 2\phi_1 - (2\phi_1 + \xi)$
 $= -\xi$ a constant we can choose and control

need intense 2406 nm source

Bottom-up approach to single-cycle pulse generation

Raman sideband generation

CEP controlled single-cycle pulses

Status of sub-cycle optical pulse generation by molecular modulation

IAMS sub-cycle source

0.833 cycle per pulse
1.4 fs envelope
440 as cycle width
controlled carrier-envelope phase
2 ns pulse train duration
8.0 fs pulse spacing
~1 MW peak power

Single Cycle Pulse

Total spectral span >70,000 cm⁻¹

Chen et.al. PRL 2008 Hsieh et al. submitted to PRL

What to do with these pulses

Time scales

Short pulses can be used to monitor and control atomic, molecular and electronic motion

CEP controlled single-cycle pulses: a new tool for science

- Nonlinearities dependent on the instantaneous E field "Single cycle physics
- 2. Quantum interference and coherent control using such
- 3. Electronic phase controlled excitation vs wavepacket control
- 4. Optical poling
- 5. QPM x-ray generation

QM Interference on bound state population of Cs

1.0 cycle (FWHM) , I=10¹¹ W/cm²

— with ionization
— without ionization

Effect on the Total ionization yield of Cs

QPM in x-ray generation

Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan

----- B

Collaborators Y. Ron Shen UCB Ci-Ling Pan NTHU Ru-Pin Chao-Pan NCTU Chao-Kuei Lee NSYSU

陳蔚然

謝智明

賴建任

詹翰松

黃書偉

梁爲弘

Bound wave packets

4

5

0

25

Time evolutions of two initial wave packets

50

time delay (fs)

75

Franck-Condon (FC) initial vibrational distr.

Initial non-FC vibrational distribution

Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan

0.4

0.2

0.0

100

Molecular Orientation CEP controlled photonics

Organic thin film

semiconductors

FIG. 3. Induced coherently controlled current signature as a function of $\Delta \phi$ on a 10 μ m gap MSM on normal GaAs using the OPG. The solid curve is the best fit for a constant amplitude sine function.

Kobayashi, PRL 94, 153903 (2005)

Van Dreel, PRL 78, 306 (1997)

Generating attosecond pulses

Modelocking extremely broadband lasers

Franz Kartner, MIT

B

Generating attosecond pulses

High-order harmonic generation

$$h\nu_{cutoff} = I_p + 3.2U_p$$
$$U_p = e^2 E_a^2 / 4m\omega^2$$
$$I \sim 3 \times 10^{14} W / cm^2$$

Advantages: shortest attosecond pulses isolated pulse or pulse train optics available

Disadvantages: 30 to >100 eV photons pulse train spacing 2 fs. low power

Bandwidth expansion by molecular modulation

