Recent Development in High Temperature Superconductivity

Maw-Kuen Wu Director, Institute of Physics, Academia Sinica

Present at Department of Physics National Tsing Hua University Hsinchu, June 3, 2009

Status of High Temperature Superconductivity

What are the Community best Achieved?

• A triumph of Chemists, Physicists and Material Scientists

Published on Web 00/00/0000

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

	Fe-Fe distance (A)	M-Fe-M angle (°)	Layer distance (A)	Tc (K)
1111(Sm, Pr, Gd)	2.84	107.4	8.3	~56
122	2.77	108.9	6.5	~38
111	2.67	112.7	6.3	~18
11	2.65	112.18	5.5	~10

Oxypnictide

a = 3.765, c = 5.518

FeSe system

- Structure type: B10, anti-PbO
- Pearson symbol: tP4
- Space group: P4/nmm, No. 129
- a= 3.783, C= 5.534
- Fe 2a x=0 y=0 z=0
- Se 2c x=0 y=1/2 z=0.26

Superconductivity in the PbO-type structure α -FeSe

Fong-Chi Hsu*⁺, Jiu-Yong Luo*, Kuo-Wei Yeh*, Ta-Kun Chen*, Tzu-Wen Huang*, Phillip M. Wu[‡], Yong-Chi Lee*, Yi-Lin Huang*, Yan-Yi Chu*⁺, Der-Chung Yan*, and Maw-Kuen Wu*[§]

*Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan; ¹Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; and ¹Department of Physics, Duke University, Durham, NC 27708

Contributed by Maw-Kuen Wu, July 28, 2008 (sent for review July 26, 2008)

The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides $La[O_{1-x}F_x]$ FeAs by Kamihara *et al.* [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05–0.12) with Tc = 26 K. J Am

Temperature dependence of the X-ray powder diffractions for FeSe by synchrotron source at BL12b2 in SPring 8 with incident beam wavelength of 0.995 Å. Observed (open black circle) and calculated (red solid line) powder diffraction intensities of FeSe at (a) 300K using space group P4/nmm and (b) 6K using space group P-1. The inset shows a single peak of the (2, 2, 0), (2, 0, 3), (2, 2, 1) reflection at room temperature and splitting two peaks of (2, 2, 0), (2, 2, 1) at 6K. Blue vertical lines show the Bragg peak positions.

structure parameter (Fe-Se)

Simulation 6K

Te-doping (FeSe_{1-x}Te_x)

K.W. Yeh, et al., EPL, 84, 37002 (2008)

K.W. Yeh, et al., EPL, 84, 37002 (2008)

$Fe_{0.5}Se_{0.25}Te_{0.25}$ diffraction at low temperature.

Pure phase.
 Only 211

 diffraction which
 belong the
 tetragonal phase,
 started to suffer
 split into two.

K.W. Yeh, et al., EPL, 84, 37002 (2008)

Transition-metal Doping (Fe_{1-x}Tm_xSe)

Cu_{0.1}(FeSe)_{0.9} bulk XRD & RT

Phase Diagram

Kamiharajet ghn Jand P. C. Bai, Physica C, 2009

Single Crystal Growth

- Stoichiometriy weights of Fe and Se powders were mixed with KCL to give a FeSe (x=0-0.15) to KCl ratio of 1.5:
- 2. These crucibl
- 3. The crifor 25-
- 4. Then if During the top

and the d. d there C.

cting at

5. Later the crucible was cooled to room temperature while annealing at 400 °C for 20-25 hours before cooling to room temperature.

FeSe crystal growth (High Pressure)

- Sample weight: FeSe powders ~0.32 g.
- Total time: 3h.

$Cu(or Mn)_{0.1}Fe_{0.9}Se crystal (High Pressure)$

- Cu (or Mn) metal + FeSe powders
- Sample weight: ~0.32 g.
- Total time: 3h.

Wilson ratio
$$R_W = \frac{\pi^2 k_B^2}{3\mu_B^2} \left(\frac{\chi_{ab}(0)}{\gamma}\right) >> 1$$

C.Q. Jin et al., unpublished

Floating Zone Melt-growth of FeSe_xTe_{1-x} Crystal

- All the crystals are grew in (001) direction and they show very well crystallization.
- Crystals are platelet, easy to peer off
- The properties of the crystal are similar to those of the bulk.
- High temperature post-annealing makes the crystals more homogeneous

Effects of High Temperature Annealing on Crystals

Crystal annealed at 800°C

Thin Film by PLD

- 1. Use targets of roughly 1"×8mm
- 2. Thin films were deposited in a vacuum chamber (~10⁻⁵ Torr) using a KrF (λ = 248 nm) excimer laser
- The power density of focused laser on the target is 5~6 J/cm², and the repetition rate is 2 Hz.
- 4. The target-substrate distance is near 50 mm.
- 5. The substrate temperature of deposition is varied from 250 °C to 500 °C.
- 6. The deposition rate of thin film is about 0.5Å/shot.
- 7. In addition, the surfaces of targets were polished before each deposition to improve reproducibility.

FeSe Thin Film

FeSe (Low Temperature Deposition)

The STEM/EDX mapping of 1 μ m (LT-) FeSe thin film grown at 320 °C. The Fe and Se concentrations were found uniformly distributed along the growth direction. This indicates that the sample is relatively homogeneous, and rules out Se gradient as the reason to suppress superconductivity in the low temperature growth films.

Questions

- Why Cu-doping destroys superconductivity but not Mn-doping?
- Why FeSe thin films deposit at relatively low temperature (with *001* preferred orientation on MgO substrate) show strong thickness dependence, but not in those high temperature deposited films (*101* orientation)?

Strongly Correlated with the Structural Distortion at low temperature!!

The temperature dependence of gamma value (open black circle), a (blue solid circle) and c (red solid circle) obtained from detailed X-ray refinement by P-1 space group.

The c is shirking as temperature decreasing with a gradient equals to 6.97×10^{-5} A/K. Oppositely, the shirking of a axis is obviously retarding as the phase transition occurring at 105 K.

9		0	F	
		Te		
	a (Å)	b (Å)	c (Å)	V
45K	3.824	3.854	6.303	90
300K	3.861	3.861	6.319	90

Temperature dependence of X-ray diffraction for FeTe using λ =1.0333 A.

The fitting results shows the different shrinking behavior between FeTe and FeSe. The FeTe compounds become a triclinic crystal which $a\neq b\neq c$ and $\gamma = 90$. This results might cause from the occupancy of Te is 80% and the larger atom size.

2 θ

38

40

2 θ / θ @ E=12.5 KeV

42

2. Further distorted at low temperature.

(Fe_{0.9}Mn_{0.1})Se_{0.85}

FeSe+Mn0.1

	a (Å)	b (Å)	c (Å)	γ
6K	3.772	3.772	5.526	90.166
300K	3.790	3.790	5.552	90

Neutron diffraction for Fe_{0.9}Mn_{0.1}Se

Fe_{1-x}Cu_xSe

Neutron diffraction for Fe_{0.9}Cu_{0.1}Se

Table X. The critical temperature of superconducting, phase transition temperature and gamma angle for iron selenide

	Tc	Phase transition	**Gamma angle (°)
		temperature	at 6 K
FeSe _{0.88}	8.? K	~105K	90.279
FeTe	none	~80K *	90
$\mathrm{Fe}(\mathrm{Se}_{0.5}\mathrm{Te}_{0.5})$	15.2 K	~100K	90.122
(FeMn _{0.1})Se	11.2 K	~85K	90.166
(FeCu _{0.1})Se	none	none	90

The X-ray diffraction results along the out-of-plane for FeSe thin films which grew at 320 degree (open red circle) and 500 degree (soild black circle). The results show's the orientation at out-of-plane had change from (00a) (red *)to (b0b) plane (black ξ).

The X-ray diffraction (220) peaks of HT-FeSe film at different temperatures. The results show the splitting of the Bragg peak indicating a structural distortion occurs at around 82K. The inset shows the change of the γ angle with temperature. (b) The X-ray diffraction pattern of LT-FeSe films for (top) 0.15µm and (bottom) 1µm film at different temperatures. The data show that for $0.15\mu m$ film the (221) Bragg peak does not change with temperature; for 1µm film the (221) peak becomes broadened at low temperature.

The Structural Phase Transition in Fe_{1+x}Se

T. M. McQueen et al., arXiv0905.1065

Structural and magnetic phase transitions in Na _{1-x}FeAs

Shiliang Li, et al., arXiv0905.0525

Temperature dependence of (Cp-Cph)/T in a magnetic field of 0 G. The phonon contribution Cph is 0.586T³-1.39E-4T⁵. A dotted line represents constant electronic specific heat 7.45 mJ/mol-K² for comparison.

According to the extrapolation fitting curve, the Debye temperature 192~198K seems similar to each other, but there is no systematic change in electronic specific heat in these three samples.

The magnetic field dependence of electronic specific heat of the $FeSe_{0.88}$ sample. The left figure shows the plot of $\gamma(H)$ -H^{1/2} and the right one shows the plot of $\gamma(H)$ -H.

Muon-spin-rotation study

- (a) Temperature dependence of the ZF muon depolarization rate of FeSe0.85. The inset shows ZF (T = 1.5 and 10 K) and LF (T = 10 K and $\mu_0 H = 0.01$ T) μSR time spectra of FeSe_{0.85}.
- (b) Temperature dependence of the Gaussian depolarization rate obtained in TF μ SR experiment at $\mu_0H=0.01$. The inset shows the TF muon-time spectra above T = 10 K and below T=1.5 K; the transition temperature Tc=8.26 K.

Khasanov *et al.*, PRB **78**, **220510R 2008**

Khasanov *et al.*, PRB **78, 220510R 2008**

- FeSe show no evidence for canonical Fermi liquid above Tc, i.e. the Korringa relation 1/T1TK2 = const. is not satisfied.
- 2. Large enhancement of 1/T1T below 100K indicates that antiferromagnetic spin fluctuations are strongly enhanced toward Tc .
- 3. Application of pressure further enhances both spin fluctuations and Tc, pointing toward a link between antiferromagnetic spin fluctuations and the superconducting mechanism.

Imai et al., arXiv:0902.3832v

Summary

- Single crystal and oriented thin films can be prepared, but quality still need further improvement
- Anisotropic magnetic susceptibility in normal state is observed
- A low temperature distortion from tetragonal (P4/mmm) to monoclinic (or orthorhombic) is essential for superconductivity
 - FeSe $-\gamma$ -angle increases from 90° to about 90.3° at ~ 105K; Tc correlates well with inverse of c-lattice parameter (1/c)
 - Te-doping has highest Tc with largest γ ; Te-doping enhances H_{c2} and Tc due to more 2D characteristics; pressures effect on Tc of Te-doped sample is much larger than that of Fe-Se
 - 3d-metal doping only Mn sustains superconductivity; the other dopings either suppress low-T structural distortion (Cu-doping) or do not form alpha-phase
- Thin film and works from other groups further support the importance of LT structural distortion to superconductivity

Issues

- What is the role of the low temperature phase transition to superconductivity ?
- Does magnetic order coexists with superconductivity at low temperature?
- Is this low temperature distortion "universal" to all high Tc systems?
- Further clarification of the order parameter symmetry !!
- Can we intercalate something between layers to make it more 2-D and raise Tc?

Acknowledgments

- Academia Sinica—F.C. Hsu, J.Y. Luo, K.W. Wei, T.W. Huang, T.K. Chen, Y.L. Huang , H.H. Chang, C.T. Wu, M.J. Wang and Y.Y. Chen (and his assistants)
- 2. P.M. Wu and A.M. Chang (Duke University)
- 3. H. Eisaki, A. Iyo, C. Kito, P. Shirage, K. Miyazawa (AIST)
- 4. Maxim Avdeev, Andrew Studer; (Bragg Institute, Australian Nuclear Science and Technology Organization)
- 5. C. Q. Jin (and students) (IoP, CAS)
- 6. A. K. Stemshorn and Y. K. Vohra (UAB)
- 7. Financial supports from Taiwan NSC & AFOSR/AOARD

Thank You Very Much for Your Attention