

The LHC, The Energy Frontier, and the Next Big Discovery

Shih-Chieh Hsu University of Washington Seattle/National Tsing Hua University

Nov 27 2013 Colloquium in NTHU

Friday, December 6, 13

Snowmass & P5

ParticlePhysicsProjectPrioritizationPanel(P5)

• Develop an updated strategic plan for U.S. high energy physics that can be executed over a 10-year timescale, in the context of a 20-year global vision for the field.

- •Previous report in 2008
- •New report to be finalized on May 2014 and based on the Snowmass input

Exciting year 2012

Much has changed since 2008 P5 Report

- "... a need to understand the priorities, ... under more stringent budgets ..."
- "the recent discovery of what appears to be the long-sought Standard Model Higgs boson and the observation of mixing between all three known neutrino types at unexpectedly large rates have opened up the possibility of new experiments and facilities that can address key scientific questions about the fundamental nature of the universe in new and incisive ways."

François Englert

Peter W. Higgs

W LHC after July 4 2012

LS1 INCREASE ENERGY TO 13-14 TeV

LS2

secure L \sim 10³⁴ and reliability Aiming at L \sim 2 10³⁴ Start LIU **LS3 : HL-LHC** New IR leveled L ~ 5 10³⁴ Experiment upgrades

Figure 1: LHC baseline plan for the next ten years. In terms of energy of the collisions (upper line) and of luminosity (lower lines). The first long shutdown 2013-14 is to allow design parameters of beam energy and luminosity. The second one, 2018, is for secure luminosity and reliability as well as to upgrade the LHC Injectors.

WLHC in Next 20 years!?

The super-exploitation of the CERN complex: Injectors, LEP/LHC tunnel, infrastructures

Stage approach toward (V)HE-LHC at CERN

TLEP

W

Other names

LORD OF THE RINGS

Nature

Physicists are discussing a proton-colliding machine that would dwarf the energy of its predecessors.

Super Duper Hadron Collider Ludicrously Large Hadron Collider Space Smoothie Maker Big Banger Quark Fountain The Doughnut of Physics Megahadrosaurousen Huge Hadron Collider Large Hadron Collider 2: Electric Boogaloo The Hadronator: The Destroyer of Atoms

BBC Richard Fisher

W

Global Interests

USA

Center for Future High Energy Physics

Director: Nima Arkani-Hamed (IAS, USA) Deputy Director: Cai-Dian Lu (IHEP, China) 高能物理前沿研究中心

9

From Layman

Scientists want to put the Large Hadron Collider on steroids and build a supermassive version of the beloved collider.

> (maybe this one will destroy the world, since the LHC was obviously not powerful enough)

LHC Collision via Michael Taylor/ Shuttershock

Thousands year curiosity

Philosophy

Empedocles (490–430 BC)

12

A Massive Problem !?

A quest since 18th century

Newton

F=ma

Einstein

Newton

F=ma

Einstein

Friday, December 6, 13

Mission of the LHC What is the mechanism of EWSB? susy, LH... models assume that we already know the answer to What is unitarizing the WW scattering amplitudes? $W_L \& Z_L$ part of EWSB sector $\supset W$ scattering is a probe of Higgs sector interactions. $\mathcal{A} = g^2 \left(\frac{E}{Mw}\right)^2$ $\epsilon_l = \left(\frac{|\vec{k}|}{M}, \frac{E}{M} \frac{|\vec{k}|}{|\vec{k}|}\right)$

loss of perturbative unitarity around 1.2 TeV

W Post-Higgs Discovery

Scenario 1: Strongly dynamics

NO HIGGS PARTICLE: HIGGSLESS MODEL (almost) killed by LHC

Possibly a mixture between authentic Higgs with the "impostor", e.g. dilaton, radion

Scenario 2: SU(2)LxU(1)Y linear + strong dynamics

Composite Higgs: Pseudo-goldston boson, strongly interactive light Higgs

Scenario 3: SU(2)LxU(1)Y linear + Perturbativity Elementary Higgs:

a) Fine-tuned: Unnature Higgs, extreme high scale fundamental theory

b) Nature: low-energy SUSY, in-existence of hierarchy problem: warped extra dimension,

W A Higgs or The Higgs

Coupling strength: 5 parameters

In the SM all 5 c = 1 and $\mathcal{L}(h \rightarrow inv) \approx 0$

Sping/CP: Need more statistics

Divergence of the Higgs mass correction

Natural Higgs

Big Questions

New Physics at high mass scale!

arXiv:1309.7847

Boosted Objects

Many BSM predicts new particles at TeV scale decaying to top, W, Z or Higgs final states.

Hadronic final states are merged into one jet due to limited calorimeter resolutions.

N subjets

W TopTagger Application

[CMS PAS B2G-12-005]

tt Resonances: All-hadronic

- m_{tī} distribution after likelihood maximization
- overwhelming background from QCD dijet production (could be reduced using advanced b-tagging techniques on subjets)
- broad resonances from KK gluon excitations

New Analysis Techniques

ATLAS-CONF-2013-087

Q-Jet: A new approach to parton shower arXiv:1201.1914 ATLAS-CONF-2013-087

A typical jet clustering is to inverse the parton shower

Q-Jet: A new approach to parton shower arXiv:1201.1914 ATLAS-CONF-2013-087

A typical jet clustering is to inverse the parton shower

But the parton shower is not really invertible Many parton shower can produce the same jet Q-jet asks: study all possible inverse parton shower path.

Q-Jet: A new approach to parton shower arXiv:1201.1914 ATLAS-CONF-2013-087

A typical jet clustering is to inverse the parton shower

Choose a random pair *ij*, using the weights:

$$\omega_{ij}^{(lpha)} = \exp\left\{-lpha rac{d_{ij} - d^{min}}{d^{min}}
ight\}$$

Each combinatorial tree sequence is a representation of parton jet Consider random combinatorial of trees

W-jet

 A W-jet has a small spread in masses for its Q-jets: a QCD jet has a very large spread in masses for its Q-jets

Q-Jet Volatility

• Inspired by the previous plots, define $\nu = \Gamma/\langle m \rangle$, where $\Gamma = RMS$

- Volatility, with $N_{Qjets} = 75$ and $\alpha = 0.1$, for W-jets and QCD-jets
 - Truth-jets on left, reconstructed jets on right
- See very good discrimination between signal and background!

- Generally very good agreement seen in data/MC!
 - W-jet events have slightly worse agreement: data has lower values of volatility

Telescoping-Jet

Idea: jet algorithms with multiple *R*'s Close collaboration iwth Yang-Ting

Figure: A cartoon calorimeter plot distinguishing the width of the localized energy distribution of a jet from the parameter *R*

New Experimental Challenges

WExperimental Challenge

- Increased luminosity
 - Higher hit-rate capability
 - Higher segmentation
 - Higher radiation hardness
 - Lighter detectors
- Radiation hardness for the innermost layer at 3cm to 4cm
 - Phase 1: 1.10¹⁵ n_{eq} cm⁻²
 - Phase 2: 5.10¹⁵ n_{eq}cm⁻²
 - HL-LHC: 2·10¹⁶ n_{eq}cm⁻²

Friday, December 6, 13

W ATLAS Pixel Upgrade

Phase O Upgrade

The new IBL will extend the pixel detector system to a 4-layer system with finer segmentation and at a smaller radius

Phase 2 Upgrade

Complete new ATLAS tracker for pixels and strip detectors

WFE 14: Largest HEP Chip

- Smaller pixels (50.250 µm²)
- Lower noise and threshold operation
- Compatibility for higher data rates
- Column drain architecture with local hit storage
- Largest chip to date in HEP:
 - maximize active area and reduce bump-bonding costs
- array size: 80 col. x 336 rows => 26880 pixels, 8x10⁷ transistors
- average hit rate at 1% inefficiency
 => 400 MHz cm⁻²; max. trigger rate:

IBM 130nm process

IBLROD DAQ

My team is responsible for firmware/software development of the VME based Read Out Driver to double readout speed!

Lynn Marx (UW physics postdoc)

Shawpin (Bin) Chen (UW EE master)

Phasell Upgrade: Design Considerationiversitäten

Occupancy [%]

Detector:	Silicon area	Channels	
	[m ²]	[10 ⁶]	
Pixel barrel	5.1	445	
Pixel end-cap	3.1	193	
Pixel total	8.2	638	
Strip barrel	122	47	
Strip end-cap	71	27	
Strip total	193	74	

ATLAS Phase II Letter of Intent

Inner layers (r ~ 3 to 15 cm)

- 1. low power
- 2. low material budget
- 3. occupancy / bandwidth
- 4. resolution

hybrid pixels (65nm) new sensor developments

ATLAS Week, Oct. 11, 2013 - NWermes, Bonn

Outer layers (r > ~ 15 cm)

- 1. low cost
- 2. low power
- 3. low material budget
- 4. resolution / bandwidth

₽

low cost hybrid pixels or monolithic pixels wafer scale processes are needed

W

ATLAS Pixel R&D

sensor materials

- □ planar Si sensors (PPS collaboration)
- □ 3D Si sensors (3D collaboration and IBL coll.)
- CVD diamond (RD42 and DBM collaborations)
- IC development
 - □ 65 nm \rightarrow within RD53 collaboration
 - □ 3D integration (within AIDA framework)
- stave + powering + link
 - mechanics R&D (stave: France, Germany, US, disks: UK)
 - powering schemes (serial powering, DC-DC)
 - GBT link
- new concepts
 - □ towards more monolithic CMOS pixels → HVMAPS and (fully) depleted DMAPS

ATLAS Week, Oct. 11, 2013 – NWermes, Bonn

IBL and DBM are the best sensor test benches

W The Next Generation ersität

ensor thickness (planar or 3D):	$100-150~\mu m$ -> MIP signal $\sim 10~ke^{-}$ before irrad.	
Pixel size:	~ 25 x 150 [*] μm ²	
hreshold:	~ 1 ke-	
hreshold dispersion:	~ 100 e ⁻	
loise:	< 200 e ⁻ @ C _{IN} [*] = 400 fF, I _{LEAK} [*] = 100 nA	
Power dissipation:	3.5 mW / mm ²	
lit rate:	~ 1GHz / cm ² => ~ 30 kHz / pixel	
lit loss:	< 0.5 % (rather 0.1 %)	
Radiation tolerance:	1 Grad, 2×10 ¹⁶ neutrons	
echnology:	65 nm	
	Sensor thickness (planar or 3D): Pixel size: Threshold: Threshold dispersion: Noise: Power dissipation: Hit rate: Hit loss: Radiation tolerance: Technology:	

M. Garcia-Sciveres,

Future pixel chips design meeting 19th February 2013

* Parameters which are not yet clear

WFirst 65nm Prototyping (LBNL, Bonn)

- Fabricated 2011, 3 x 4 mm^2
 - ~500 pixel matrix, analog + configuration only (no digital region)
 - Pixel size 25um x 100um (estimate 25 x 150 with digital region)
 - Bump inputs staggered to maintain 50um bump spacing
- Irradiated in Los Alamos in 2011, CERN PS 2012, CERN x-ray 2013 radiation does effect is fine only upto 4MGy (Need 10MGy)

RD53:Work Plan

Goal is to have a full chip design in 65nm in 2-3 years.

Title	Scope	Year 1	Year 2	Year 3
WG1	Qualification of technology to 10 MGy TID, 10 ¹⁶ n.eq./cm ²		FR	
Radiation	transistor simulation models after irradiation		FD	
	evaluation of logic cell libraries after irradiation		FR(*)	
WG2	Design methodology & verification of 5×10^8 transistor IC		FD	
Top Level	Analog integration in large digital chip, power distribution		Р	FD
Design	Synthesis constraints, clock distribution and optimization		Р	FD
WG3	System Verilog simulation and Verification framework		FD	
Simulation	Optimization of global architecture/pixel regions/pixel		FR	
Test Bench	h External system and external physics data		Р	FD
	Verification of test chips and evolving designs	-	OA	OA
WG4	Definition of readout and control interfaces (e.g LPGBT)	IR	FR	
I/O	Definition of standardized I/O protocols and performance	IR	FR	
	Implementation of readout and control interface blocks	-	Р	Р
WG5	Evaluate and compare alternate amplifier designs	-	IR	FR
Analog	Evaluate and compare charge ADC techniques	-	IR	FR
Design	vs. number of bits (TOT, shared ADC, etc.)			
	Define common requirements for IP block design	FR		
WG6	Evaluate, document, and keep library of IP blocks	-	OA	OA
IP Blocks	Generate overview and recommendations		IR	IR
	Each block will have its own prototyping milestones	Р	Р	Р

Milestone Key: IR=Interim Report, FR=Final Report, P=Prototype, FD=Final deliverable, OA=Ongoing Activity.

(*) Add 1 year if a custom logic library must be developed

Detector R&D

Vertex: the pitch & the radiation hardness

requirement from Physics: better granularity

- increase in the number of pile-up events up to 200 per bunch-crossing @ 5x10³⁴ cm⁻²s⁻¹
- Identification of heavy flavours @ ILC, SuperB, Belle II
- 2-tracks separation in the core of hadronic jets

My Involvements

pixel FEI3 (50x400um) IBMI 30nm 40colx I 60row 60MHz max RDO pixel FEI4 (50x250um) IBMI 30nm 80colx336row 400MHz max RDO Largest chip to date

CMOS MAPS (25x50um?) TSMC 65nm? Rad Hard? Cheaper?

PixelROD DSP

IBLROD DAQ T3MAPS DAQ system

Summary

ATURS A

- The LHC Fully exploration of TeV scale physics
- The Energy Frontier Go beyond TeV Scale
- The Next Big Discovery
 To be enabled by new techniques
 + brave thinkers!

Backup

Approximate Timelines of HE projects

