From Black-Body Radiation to Next-Generation Electronics

C.T. Liu 2014.11.19

Contents:

- 1. From Black-Body Radiation to Transistors
- 2. Semiconductor Technologies
- 3. Display Technologies
- 4. Lighting Technologies
- 5. 3D Image Systems
- 6. Conclusion

From Black-Body Radiation to Quantum Mechanics

Planck discovered the empirically fitting function, and constructed a physical derivation of this law. In 1901, he expressed $\epsilon = h v$. h is now known as Planck's constant.

Ultimately, Planck's law of black-body radiation contributed to Einstein's concept of quanta of light, which became the fundamental basis for the development of quantum mechanics.

From Quantum Mechanics to Transistors

Thickness Variation

Sub-Oxide Structures

Interface imperfect bonds can be studied with high-resolution XPS.

Z.H. Lu, "Synchrotron and Conventional Photoemission Studies of Oxides and N_2O Oxynitrides," in "Fundamental Aspects of Ultrathin Dielectrics on Si-Based Devices," edited by E. Garfunkel et al., Kluwer Academic Publishers, Netherlands, 1998, p.49.

Nitrogen Binding Energy

- 1. N-1s binding energy ~ 397.6eV, same as Si₃N₄.
- Longer oxidation increases the binding energy toward 398.4 eV of Si_x=N-O_{3-x}.
- 3. Wet-oxidation also shifts the binding energy to 398.4 eV.

Substrate Defects

Interconnect Challenges

Communication IC Technology Roadmap

High-Speed Technologies

Base-Emitter Breakdown Voltage vs Ft

Parameters for Device Breakdown:

- bandgap energy
- doping density
 - short-channel FETs
- dielectric breakdown
 - short-channel MOS
- space-charge limiting current
 - collector current of BJTs

InP HBT Device SEMs

InP DHBT --- RF Performance

ft fmax Plot

Lot 51, wafer 203, RF tester 1.6 x 3.4

DC degradation after RF excitation

Lot 51, wafer 203, RF tester 1.6 x 3.4
----- before ----- after

40Gb/s Driver Amplifier

Output up to 4.5V (5V simulated)

Bias for this measurement:

Vee=-5.3V, I=190 mA

Vcc1=0.6V

Vcc2=2.5V, I=50 mA

Very low power consumption: 1.2 W!!

- most of jitter caused by 40 Gb/s source
- rise time @ 40Gb/s limited by source, and on-wafer measurement: cables and probes

Very compact circuit size: 850x850 μm

High Gain-BW Distributed Amplifier for 40Gbps

Gain=17 dB BW>70 GHz GBW>500 GHz (record GBW for single-stage DA)

Size:0.7x2mm

Metal Ta₂O₅ MIM Capacitor

MRAM: Spintronics

Spin-Torque Transfer (STT)

Field or Current

Ref: Magnetic Memory (Cambridge University Press)

Contents:

- 1. From Black-Body Radiation to Transistors
- 2. Semiconductor Technologies
- 3. Display Technologies
- 4. Lighting Technologies
- 5. 3D Image Systems
- 6. Conclusion

Generation Migration in TFT-LCD

Mother Glass size grew 1.5 times every 1.5 years

TFT LCD Generation Migration

Relative Glass Size in Each Generation

Revolution Waves of TFT LCD

2nd Wave: Performance Enrichment - Make The World Gorgeous!

3rd Wave: Power & Material Efficiency - Make The World Green!

4th Wave: Functions for Human Interface - Make The World No Gap!

Importance of High Contrast Ratio

Contrast Ratio Improvement can increase dark color performance.

Advanced MVA-mobile Technology

Features

- Wide Viewing Angle (160° / 160°)
- Low Color Washout
- High Contrast Ratio (2100:1)

Product Applications

- Mobile Phone
- DSC
- Mobile TV

AMVA-mobile

Sunlight Readable Display

ATR-MVA

<u>Under shadow</u> 30000 Lux

TMR+TN/WV

Direct sunlight 80000 Lux

Advanced Simulated Pulsed Driving

Features

Fast response time to reduce motion blur (4ms Grey to Grey / 8ms MPRT)

Image Processing for Vivid Picture

✓ Saturation Enhancement

Image Gamut Extension

Hue Division

- Outline panel's color characteristics
- Find image gamut boundaries
- Choose certain hue pages to decide image color templates

High Dynamic Contrast

High Dynamic Contrast

Current = 9.5 A

Voltage = 10.95 V

Power Saving = 58% = 1 – (9.5 × 10.95) / 245.28

* LED B/L Full ON = 22.4A × 10.95V = 245.28 W

 $Lmax = 418 cd/m^2$ $Lmin = 0.04 cd/m^2$

CR = 418 / 0.04 = 10,450

CABC Function

Purpose

- •To detect the image content and keep the same image quality with dimming.
- •To reduce power consumption 50% in darker image.

Dynamic Backlight + Dynamic Contrast + Dynamic Gamma

- > Improve contrast and detail
- > Lower Power consumption

Contrast Ratio: 300

Contrast Ratio: 700
Power saving 50%

C.i.1

Slim & Light

0.9mm slim boarder (2.2")

Features

- Possesses the slim border of 0.9mm
 on both the right and left sides
- The upper side border width of merely 1.2mm
- Be able to increase the active area and enhance the image sleekness

0.69mm mobile module (1.9")

Features

- Implement the latest glass thinning technology and shrink the thickness of related components
- •13% thinner than the thickness of a credit card
- Weight of 2.2 grams
- •400-nit high brightness
- Accomplish a multitude of features light, slim, elegant and bright

Precision Machinery Technology

-- integrated micro-optics, molding, thermal

Roll-to-Roll 3µm Direct Printing Patterning Technology Revolution

Now

Future

7-step process	>>>
film deposition	>>>
photo resist coating	>>>
resist baking	>>>
photo exposure	>>>
resist development	>>>
film etching	>>>
resist stripping	>>>

- Replace 7 process equipment with 1
- Increase material usage from 5% to 95%
- Industry status: sheet process, $> 30 \mu m$
- Komori-ITRI: roll-to-roll process, 3μm

 $3\mu m\,$

 $30 \mu m$

Contents:

- 1. From Black-Body Radiation to Transistors
- 2. Semiconductor Technologies
- 3. Display Technologies
- 4. Lighting Technologies
- 5. 3D Image Systems
- 6. Conclusion

OLED Lighting Features

- Simple: surface light source
- *Innovative*: thin and light
- Harmless: UV-less, IR-less, Hg-free
- Truthful: closest to natural light
- Beautiful: high color rendering
- Comfortable: diffusive, non-glare
- Power & material saving

Bendable Very Thin 0.3 mm thick **Very Light** 0.05 g/cm²

customized

transparent

flexible

Interior designs

See through it

luminaire designs

Audi

OLED desk lamps

O'Leaf Luminaire

A

Olé Source: Astron Fiamm

flexible OLED lighting

large area and transparent

3D

lamps

Contents:

- 1. From Black-Body Radiation to Transistors
- 2. Semiconductor Technologies
- 3. Display Technologies
- 4. Lighting Technologies
- 5. 3D Image Systems
- 6. Conclusion

Object Reconstruction – Handheld 3D Scanner

Capture the World in 3D

Comparisons of 3D Scanners

	3D Systems Sense
Resolution	1 mm
Accuracy	0.9 mm
Measurement Rate	< 5 fps
Working Distance	35 ~300cm
Scan Area	57.5度
Weight	0.38 kg
Color	Yes
Light Source	IR Laser
Price	US 419

電光所 (Target)	
0.5~1 mm	Resolution
0.1mm	Accuracy
10 fps	Measurement Rate
35 ~ 65cm	Working Distance
45度	Scan Area
< 1.3kg	Weight
Yes	Color
IR LED	Light Source
	Price

Indoor Space Reconstruction - Google

Tango project: stereo camera combined with tablets and smartphones

Room reconstruction

Staircase reconstruction

From On-Site Control to Cloud Control

Stage 1: On-Site Control

Stage 2: Cloud Control

System Operation - Initialization

- Detect environment complexity
- Initialize position

 Assign flight path patterns (eq., 之) from learning database

System Operation - Scanning

→ 3D modeling in cloud, real-time adjusting flight path (replace loop closure functions)

Hardware: MAV

- Ascending Technologies (Germany), NTD 50k: on-board with Intel 4-Core i7-3612QE, 2.1 GHz for autopilot
- Parrot AR. Drone 2.0 (France), NTD 15k: iPod and android have App for easy controls

- 雷虎科技 (TW): carrying capacity 200g
- GETOP (TW): carrying capacity 4.5kg including camera

MAV: micro air vehicle or micro aerial vehicle

Summary

- 1. It is a very exciting journey to do research.
- 2. From black-body radiation (1901) to nextgeneration electronics (2020-2050), we continue to explore amazing sciences and technologies.
- 3. Many frontier technologies will be in production 20 years from now and change our thinking completely.