

# Quantum Optics with Propagating Microwaves in Superconducting Circuits

### Io-Chun Hoi 許耀銓





## Outline

- Motivation: Quantum network
- Introduction to superconducting circuits
- Quantum nodes
- The single-photon router
- The cross-Kerr phase shift
- The photon-number filter
- The quantum spectrum analyzer





#### Quantum node:

Generating, processing, routing, storing, reading out quantum information.

#### Quantum channel:

Distributing quantum information.

Enabling large scale quantum computing and quantum communication.





#### Telecom photons to distribute quantum information Quantum node: superconducting circuits Microwave-optical interface is needed

R.W. Andrews, *et al.* Nature Physics **10**, 321 (2014) Y. Kubo *et al.* PRL **105**, 140502 (2010)

國立情華大學

## Advantages of superconducting circuits



Atom-light interaction on single photon level

- 1. Photons and "atom" interaction can be engineered
- 2. Standard on-chip fabrication technique
- 3. Tunable transition energy of the "atom"
- 4. Mechanical stable

國立情華大學

## Comparison of the toolboxes

Superconducting circuits Quantum optics

Optical photons Microwa

Microwave photons

國立情華大學 NATIONAL TSING HUA UNIVERSITY

## Introduction to Superconducting Circuits



#### **Basic Elements of Superconducting Circuits**





#### **Basic Elements of Superconducting Circuits**





Artificial Atom Based on Quantized Superconducting Circuits



LC Harmonic oscillator

 $f\sim 5GHz\sim 240mK$ 



Artificial Atom Based on Quantized Superconducting Circuits



LC Harmonic oscillator  $f \sim 5GHz \sim 240mK$ 



Artificial Atom Based on Quantized Superconducting Circuits



LC Harmonic oscillator  $f \sim 5GHz \sim 240mK$ 



JJ is a nonlinear disspationless inductor Nonlinearity makes the circuit anharmonic and addressable.



Artificial Atom Based on Quantized Superconducting Circuits





LC Harmonic oscillator  $f \sim 5GHz \sim 240mK$ 

JJ is a nonlinear disspationless inductor Nonlinearity makes the circuit anharmonic and addressable.



Artificial Atom Based on Quantized Superconducting Circuits



LC Harmonic oscillator  $f \sim 5GHz \sim 240mK$ 

Tunable transition frequency by flux  $\Phi_{ext}$  through the SQUID loop.

國立情華大學 NATIONAL TSING HUA UNIVERSITY

#### Resonant scattering



Fig: O. Astafiev, et al. 327, 840 Science (2010)

國立情華大學 NATIONAL TSING HUA UNIVERSITY Resonant scattering in 3D space



Atom/dipole emits light



國立情華大學 NATIONAL TSING HUA UNIVERSITY Resonant scattering in 3D space





## Resonant scattering in 1D waveguide



D.E. Chang et al. Nature Physics 3, 807(2007)



Fully coherent: no transmission, perfect reflection.











## Transmission and reflection

$$r = \frac{\langle V_R \rangle}{\langle V_{in} \rangle} \qquad \swarrow \qquad \downarrow 1 > \qquad \downarrow 1 > \qquad \downarrow 1 > \qquad \downarrow 1 > \qquad \downarrow V_T \qquad t = \frac{\langle V_T \rangle}{\langle V_{in} \rangle}$$

**Reflection coefficient** 

Transmission coefficient

t = 1 + r

$$r = -\frac{\Gamma_{10}}{2\gamma_{10}} \left[ \frac{1 - i\delta\omega_{p} / \gamma_{10}}{1 + (\delta\omega_{p} / \gamma_{10})^{2} + \Omega_{p}^{2} / \Gamma_{10}\gamma_{10}} \right]$$

n resonance, low power

$$\left| r \left( \delta \omega_p = 0, \Omega_p \ll \gamma_{10} \right) \right| = \frac{\Gamma_{10}}{2\gamma_{10}} = \frac{1}{1 + 2\Gamma_{\varphi} / \Gamma_{10}}$$

 $\begin{array}{l} \delta \omega_{p} \text{ :Detuning} \\ \Gamma_{10} \text{ :Relaxation} \\ \Gamma_{\varphi} \text{ :Pure dephasing} \\ \gamma_{10} = \Gamma_{10} \ / \ 2 + \Gamma_{\varphi} \end{array}$ 

Strong interaction limit:

$$\Gamma_{10} \gg \Gamma_{\varphi} \qquad \left| r \left( \delta \omega_p = 0, \Omega_p \ll \gamma_{10} \right) \right| \simeq 1 \quad \text{Fully coherent.}$$

#### 國立情華大學

## Saturation of transmission



| Sample | $E_J/h$ | $E_C/h$ | $E_J/E_C$ | $\omega_{10}/2\pi$ | $\omega_{21}/2\pi$ | $\Gamma_{10}/2\pi$ | $\Gamma_{\phi}/2\pi$ | Ext. |
|--------|---------|---------|-----------|--------------------|--------------------|--------------------|----------------------|------|
| 1      | 12.7    | 0.59    | 21.6      | 7.1                | 6.38               | 0.073              | 0.018                | 90%  |
| 2      | 10.7    | 0.35    | 31        | 5.13               | 4.74               | 0.041              | 0.001                | 99%  |

國立情華大學

## Coherent vs Incoherent scattering





$$\Omega_p \ll \gamma_{10}$$
$$\left\langle V_{in} \right\rangle^2 \simeq \left\langle V_R \right\rangle^2 \simeq \left\langle V_R^2 \right\rangle \quad \left| r_{p,1} \right| \sim 1$$

I.-C. Hoi et al. Phys. Rev. Lett. 108, 263601(2012)



#### **Autler-Townes Splitting**



A. A. Abdumalikov, Jr et al. PRL 104, 193601 (2010)



### The Single-Photon Router



By turning on or off the control tone, we can decide which port the input photons go to.

I.-C. Hoi et al. PRL 107, 073601 (2011)



Measuring both T and R simultaneously



國立情華大學 NATIONAL TSING HUA UNIVERSITY

#### Photon-Photon interaction via a three-level atom

國立情華大學

NATIONAL TSING HUA UNIVERSITY

Photon-Photon interaction via a three-level atom



國立情華大學

Photon-Photon interaction via a three-level atom





 $2\rangle$ 

 $1\rangle$ 



Parameters  $P_P, P_C, \omega_P, \omega_C$  $\omega_C = \omega_{21}$ 

國立情華大學

National TSING HUA UNIVERSITY Nonlinear interaction between two microwaves





#### The Giant Cross-Kerr Phase Shift



 $\Delta \varphi_p \propto \left\langle N_C \right\rangle$ 

I.-C. Hoi et al. PRL 111, 053601 (2013)

國立情華大學

NATIONAL TSING HUA UNIVERSITY

#### The Giant Cross-Kerr Phase Shift



國立情華大學 NATIONAL TSING HUA UNIVERSITY

### What is the photon statistics of the scattered field?



#### Intensity-Intensity Correlation



國立情華大學

Photon statistics from second order correlation function

A comparison between different light sources:





## Photon number filter

Poisson probability distibution



D.E. Chang et al., Nature Physics 3, 807 (2007)



## Photon number filter

Poisson probability distibution



D.E. Chang et al., Nature Physics 3, 807 (2007)



#### Second-order coherence of microwaves

- Hanbury Brown-Twiss measurement of output state
- Commercial "beam splitter"
- Noise temperature of detection chain is about 7K
- Noise of two amplifier is uncorrelated.

$$g^{(2)}(\tau) = 1 + \frac{\left\langle \Delta P_1(t) \Delta P_2(t+\tau) \right\rangle}{\left[ \left\langle P_1(t) \right\rangle - \left\langle P_{1N}(t) \right\rangle \right] \left[ \left\langle P_2(t) \right\rangle - \left\langle P_{2N}(t) \right\rangle \right]}$$

Covariance

$$\Delta P_{1} \Delta P_{2} \equiv \left[ P_{1} - \left\langle P_{1} \right\rangle \right] \left[ P_{2} - \left\langle P_{2} \right\rangle \right]$$



Gabelli *et al*. PRL **93** 056801(2004) D. Bozyigit *et al*. Nature Phys. **7**, 154(2011) C. Lang *et al*. Nature Phys. **9**, 345(2013)



**Transmitted field: Superbunching Statistics** 



國立情華大學

Reflected field: Antibunching Statistics



The antibunching behavior reveal quantum nature of light!

I.-C. Hoi et al. Phys. Rev. Lett. 108, 263601(2012)



**Reflected field: Theory** 



國立情華大學 NATIONAL TSING HUA UNIVERSITY

## An artificial atom in front of a mirror



#### An artificial atom in front of a mirror



Reflection coefficient:



Single ion: J. Eschner Nature, 413, 495 (2001)

Mirror shapes the modes of the vacuum that couple to atom.

國立情華大學

## Changing the spontaneous emission rate



國立情華大學

ATIONAL TSING HUA UNIVERSITY

## Changing the spontaneous emission rate



國立情華大學

NATIONAL TSING HUA UNIVERSITY

### Changing the spontaneous emission rate





Spontaneous emission rate as a function of normalized distance



 $\Gamma_1(\Phi) = 2\Gamma_{1,b} \cos^2[\theta(\Phi)/2]$  $\theta(\Phi) = 2 \times [2\pi L/\lambda(\Phi)] + \pi$ 

 $\Gamma_{1,b}$  laxation rate of bare atom

the same atom
 is the same atom



Io-Chun Hoi



#### NATIONAL TSING HUA UNIVERSITY Calibrating atom-field coupling K





Probing quantum vacuum fluctuations from spontaneous emission rate



$$\Gamma_1 = k^2 S$$

$$-S = 2\hbar\omega_a \cos^2[\theta(\Phi)/2]$$

k: coupling constant



## Conclusion

#### Quantum node:

Generating, processing, routing quantum information.



The photon-number filter (Generating) The cross-Kerr phase shift (Processing: phase gate) The single-photon router (Routing) The quantum spectrum analyzer (Probing fluctuation)

I.-C. Hoi *et al.* Physical Review Letters, **107**, 073601 (2011)
I.-C. Hoi *et al.* Physical Review Letters, **108**, 263601 (2012)
I.-C. Hoi *et al.* Physical Review Letters, **111**, 053601 (2013)
I.-C. Hoi *et al.* Nature Physics doi:10.1038/nphys3484 (2015)



## Acknowledgements

Experimentalists Per Delsing (Chalmers), Chris Wilson (IQC), Arsalan Pourkabirian (Chalmers)

Cooperate with Chalmers theorists Göran Johansson, Lars Tornberg, Anton Frisk

Postdoc, PhD student, Master student wanted!