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盤古開天
Far-UV Spectroscopy and Photochemistry 

in Astrophysics and Astrochemistry

§. Absorption cross sections of interstellar molecules 

§. Absorptions of jet-expanded interstellar molecules

§. Absorptions of solid interstellar molecules 

§. Photochemistry of solid interstellar molecules 

§. Photoluminescence of diamond



宇宙考古

Isotopic Fractionations



Isotopic Fractionations

A key issue in understanding

the atmosphere and climate of

an extraterrestrial body and

their variation is the extent of

isotopic fractionation, such as

D/H, 18O/16O, and 15N/14N.



Isotopic Fractionations
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D/H ratios in the solar system and interstellar clouds
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D/H ratios in the solar system and interstellar clouds

Hubble Space Telescope
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D/H ratios in the solar system and interstellar clouds

Earth
1.557610-4
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PHIFE

A mechanism proposed to explain

variations in isotopic fractionation

on astro-environments is called

the photo-induced fractionation

effect (PHIFE). The crucial idea is

that the rate of photolysis differs

greatly for various isotopes near

the threshold region.



FUV

Spectrum of Solar flux



Dissociation Rates by Sun
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Electronic excitations vs absorption specta



I. FUV absorption cross sections

To assess the photochemically induced
changes in planets, we must know absolute
absorption cross sections of planetary
molecules in the far-UV range.

Absorption cross sections of interstellar
molecules have been extensively measured in
the far-UV range, but such data for their
isotopes are lacking and need to be
established.



D/H ratios in the solar system and interstellar clouds
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Key processes controlling the D/H ratio in Venus
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Key processes controlling the D/H ratio in Venus

Comparison of photolysis rates of HCl 

And DCl in the atmosphere of Venus



The column integrated photolysis rate

of HCl is about 6 times of DCl.

Hence, solar dissociation of HCl and

DCl contributes to enhancement of the

[D]/[H] ratio observed in the Venusian

atmosphere.

D/H ratio is enriched on Venus over the telluric value by a factor of 150.



D/H ratios in the solar system and interstellar clouds
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H2O  on Mars
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Mars had plenty of water once. Dissociation of water vapor 

with subsequent escape of H, H2, and O is the primary 

mechanism of water loss from Mars. H2O and HDO are the 

major sources of H and D in Mars. 
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Photochemical model of Mars



IIIsssoootttooopppiiiccc   FFFrrraaaccctttiiiooonnnaaatttiiiooonnn   ooofff   DDD///HHH   ooonnn   MMMaaarrrsss   
 

 
 Owen et al. reported that D/H = (94)×10

-4
  

on Mars in 1988.  

Compared: D/H = 1.56 × 10
-4

 on Earth. 

 

 In 1998, the measurement from HST  

confirmed the D/H ratio. 

 

Hubble Space Telescope
HST spectra near the H Ly line of Mars

Krasnopolky et al., Science, 

vol. 280, 1576 (1998).
HM

D
HE



H= (H)+2 (H2)+ (HD) ~ 1.6108 atoms cm-2 sec-1

D= (D)+ (HD)              ~ 8.0103 atoms cm-2 sec-1

D/ H

[HDO]0/2[H2O]0
F=

~ 0.02 measured by Hubble Space Telescope

~ 0.32 calculated from the best model

Photochemical model in Mars

Efficiency of escape of D relative to H:
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H= (H)+2 (H2)+ (HD) ~ 1.6108 atoms cm-2 sec-1

D= (D)+ (HD)              ~ 1.5103 atoms cm-2 sec-1

D/ H

[HDO]0/2[H2O]0
F=

~ 0.02 measured by Hubble Space Telescope

~ 0.32 calculated from the best model

~ 0.06 calculated from our data

Photochemical model in Mars

Efficiency of escape of D relative to H:

7 - 23



Time history of the D/H ratio is given by

X(t) = X(0) [(W+L)/W]1-F

X(t) is the D/H ratio at time t

W is the remaining reservoir of water at time t

L is the amount of water lost from the planet



WWaatteerr  oonn  MMaarrss  

 The VUV cross sections of HDO were 
measured first time. 

 
 In the atmosphere of Mars, photolysis of 

HDO is 2-3 times less efficient than that of 
H2O. 

 
 The loss of water from Mars, based on this 

work, was estimated to be equivalent to a 
global layer of 50 m. 



Nitrogen Isotopic Fractionation

Ratio on Earth



Nitrogen Isotopic Fractionation

CNO cycle
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Cassini-Huygens 

Mission to Saturn 

The Cassini spacecraft was launched on 10/7/1997 for a four year orbital

tour of Saturn and its satellites scheduled beginning in July 2004.



Cassini-Huygens Mission

NH3 observed in planets

The spacecraft flew by Jupiter in Dec.

2000 ~Jan. 2001: Unique global

infrared spectral maps of Jupiter

obtained.



Nitrogen Isotopic Fractionation

Nitrogen puzzle



Jupiter

CNO cycle

14N/15N ratio in Jupiter

Nitrogen puzzle

//upload.wikimedia.org/wikipedia/commons/2/21/CNO_Cycle.svg


Jupiter

14N/15N ratio in Jupiter

Nitrogen puzzle



Jupiter

14N/15N ratio on Jupiter

165 170 175 180 185 190 195 200 205 210 215 220

-5

0

5

10

15

20

25

10 5 0

15
NH

3

NH
3

 

 

C
ro

s
s

 s
e

c
ti

o
n

 /
 M

b

Wavelength / nm

VUV absorption cross sections of 14NH3 and 15NH3



Jupiter

CNO cycle

14N/15N ratio in Jupiter

Nitrogen puzzle

14NH3 & 15NH3 on Jupiter

//upload.wikimedia.org/wikipedia/commons/2/21/CNO_Cycle.svg


D/H ratios in the solar system and interstellar clouds
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CH4, C2H6, and NH3 in Jupiter



HCl / DCl Venus

H2O / HDO / D2O          Mars

CH4 / CH3D          Jupiter

C2H6 / C2H5D          Jupiter 

NH3 / NH2D / NHD2 / ND3 / 15NH3 Jupiter

CH3OH / CD3OH / CH3OH / CD3OD          Comets

Works have been done
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II. FUV absorption below 100 K

To assess the photochemically induced
changes in space, we must know absorption
cross sections of pertinent planetary species
in the far-UV range.

Absorption cross sections of interstellar
molecules have been extensively measured in
the far-UV range near room temperature, but
such data for low temperature are lacking
and need to be established.



FUV Astro-science
Cassini-Huygens Mission to Saturn 



FUV Astro-science
Cassini-Huygens Mission to Saturn 

Observed Titan’s transmission spectrum

from the Cassini UVIS FUV spectrograph. 

Shemansky et al.,

Science, 378, 978 (2005)
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FUV Astro-science
Cassini-Huygens Mission to Saturn 

Observed Titan’s transmission spectrum

from the Cassini UVIS FUV spectrograph. 

VUV Slit-jet Absorption System

Shemansky et al.,

Science, 378, 978 (2005)



Cassini-Huygens Mission to Saturn 

Observed Titan’s transmission spectrum

from the Cassini UVIS FUV spectrograph. 

VUV Slit-jet Absorption System
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Measured absorption cross sections of C2H2

at 85 K with VUV slit-jet absorption system 

Absorption Cross Section of Gaseous Acetylene 

at 85 K in Wavelength Range 110-155 nm

Shemansky et al.,

Science, 378, 978 (2005)



Cassini-Huygens Mission to Saturn 

Observed Titan’s transmission spectrum

from the Cassini UVIS FUV spectrograph. 

VUV Slit-jet Absorption System
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Measured absorption cross sections of C2H2

at 85 K with VUV slit-jet absorption system 

Absorption Cross Section of Gaseous Acetylene 

at 85 K in Wavelength Range 110-155 nm
Cheng et al., ApJS, 196, 3 (2011)

Absorption cross sections

of gaseous C2H2 at 298

and 85 K were measured

in wavelength range 110-

155 nm with a VUV slit-jet

absorption system. The

cross sections of C2H2 are

applicable to determine

properties sensitive to

temperature for diagnostic

work on Saturn and Titan.

Shemansky et al.,

Science, 378, 978 (2005)



Titan

Photochemistry of Titan



Titan

Photochemistry of Titan

Observed Titan’s transmission spectrum

from the Cassini UVIS FUV spectrograph. 

Shemansky et al.,

Science, 378, 978 (2005)



Titan

N3, CnN (n = 1-3), CN2, (CN)2, 

HCN2, HC2N, C(NH)2, HN3, HNC, 

HCN, HCCNH+ and NCCN+

CH4-N2 clouds
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FUV Photolysis of  

Solid Methane
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FUV photolysis on pure solid CH
4
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Observation in Space



Observation in Space

Observatory:  millimeter wave, submillimeter,  microwave

Elevation: 5,104 m

Observatory Site: Llano de Chajnantor

Location: Atacama Desert, Chile

Established: 1999



Telescope C2, C3, C4…Cn

C2H, C3H, C4H,

C5H, C6H,…CnH

Carbon star

IRC +10216

Transient species observed in IRC + 10216



NASA's Infrared Spitzer Space Telescope 

http://www.spitzer.caltech.edu/mission/38-Science



Where Is Spitzer Now? 

http://www.spitzer.caltech.edu/mission/where_is_spitzer
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Production of Carbon Chains up to C20

FUV Photolysis on CH4
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CH4 : Ne   1:0 1:100 1:1000 1:2000 1:10,000    1:1000 + 6 H2

Cn C2 C6 C7 C9 C18 or C20 C20

Production of Carbon Chains up to C20

Lin et al. J. Phys. Chem. A, 2014, vol. 118, 3438



The smallest fullerene: isomers of C20

M. F. Jarrold, Nature, 2000, 407, 26



Carbons in Space

Ehrenfreund  & Foing, Science, 2010, 329, 1159



Detection of C60 and C70

Cami et al., Science, 2010, 329, 1180

in a Young Planetary Nebula 



Buckyballs in a Young Planetary Nebula

http://www.spitzer.caltech.edu/images/3213-ssc2010-06a-Jiggling-Soccer-Ball-Molecules-in-Space



FUV Photolysis of Solid Methane
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Observation C60 and PAHs



Observation in Space

Berné and Tielens, PNAS, vol. 109, 401 (2012)



Observation C60 and PAHs

PAHs                   graphene



UV-visible spectrum of C60
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Far-UV Stability of C60
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Sky with nano-diamonds



PL of Diamond
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Lucy: a diamond star
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