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PHIFE

A mechanism proposed to explain
variations in isotopic fractionation
on astro-e iments is called
the photo- ed fractionation
. effect (PHIFE). The crucial idea is
‘that the rate of photolysis differs
greatly for various lsotopes near
the threshold region.
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Dissociation Rates by Sun

Absolute cross sections of various 1sotopoloques of methanol :
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Electronic excitations vs absorption specta

Mulliken Diffe_lrence Potential
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D/H ratios in the solar system and interstellar clouds
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D/H ratios in the solar system and interstellar clouds

'H
1.00794
99.985%

‘H | °H
2.0141
0.015% t'2=12.32yrs

Cosmogenic/
anthropogenic

@
2
z
w
>

METEORITIC

/ ORGANICS

:

MET W
PROTOSOLAR OF HYDRATION


https://www.google.com.tw/imgres?imgurl=http://gwadi.org/sites/gwadi.org/files/hydrogen.gif&imgrefurl=http://www.gwadi.org/tools/tracers/hydrogen&docid=6Li_-2OdZmVTuM&tbnid=2PognZZyVkE5VM:&w=416&h=163&ei=BYKVUoOCKcydlQW844CYBA&ved=0CAIQxiAwAA&iact=c




Water on IViars

Mars had plenty of water once. Dissociation of water vapor
with subsequent escape of H, H,, and O is the primary
mechanism of water loss from Mars. H,O and HDO are the
major sources of H and D in Mars.
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Isotopic Fractionation of D/H on Mars

® Owen et al. reported that D/H = (9£4)x10™
on Mars in 1988.
Compared: D/H = 1.56 x 10™ on Earth.

Subtracted
by cloud 3

spectrum




(D) T

CO," +H, - CO," + HD -
CO,H" +e -H+CO, CO,D* +e —»D+CO,

hv,
hv, i
O('D)+H.O O('D)+HDO

Ho, | > DO,
[H, OH’ HOE! HEOE':' :f ‘ l:H, D, OH, OD, HOE, DO‘E}

o= o(H)+2 ¢(H,)+ ¢(HD) ~ 1.6x108 atoms cm-?sec
¢op= ¢(D)+ ¢(HD) ~ 8.0x103% atoms cm2sec?

~ 0.02 measured by Hubble Space Telescope

~ 0.32 calculated from the best model




Absorptiom cross sections of the variows isotopoloques of waler at 295 K
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Photochemical model in Mars

®(D) T

H D

CO," +H, - { CO, +HD -
CO,H* +e —H+CO, CO.D* +e —»D+CO,

H, HD

hv.
hv, g
HO, ) DO,
(H, OH, HO;, H;0,) < (H, D, OH, OD, HO;, DO;)

Efficiency of escape of D relative to H:

~ 0.02 measured by Hubble Space Telescope

oo/ ¢
[HDo]E)O/zFHZO]O ~ 0.32 calculated from the best model

~ 0.06 calculated from our data




Liquid water may have flowed over the
surface of Mars in the planet's distant past.

Time history of the D/H ratio is given by
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Nitrogen Isdtopic Fractionation
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Nitrogen Isdtopic Fractionation
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NH3 observed in planets

INTERPLANETARY TRAJECTORY

Saturn
arrival

Cassini-Huygens Mission
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fiyby o
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The spacecraft flew by Jupiter in Dec.
2000 ~Jan. 2001: Unique global
infrared spectral maps of Jupiter
obtained.
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Nitrogen Isdtopic Fractionation
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AN/*N ratio in Jupiter

INTERPLANETARY TRAJECTORY

Saturn
arrival

Venus
flybys

Jupiter
fiyby o

Launch

Jupiter
Nadir View
FP3

at+5 5
Lat +5 to +15 : FP4
Res =28 em™ Lat +5to +15

Res=2.8 cm™!

4x10%
Jupiter
Nadir View

1.5x107
3x10%

CH,

S
o
B
S

RADIANCE (W em2 s /em!)

RADIANCE (W em™2 sr”! fem™!)

Nitrogen puzzle

0
600 650 700 750 800 850 900 950 1000 1050 1100 (

0
- X -1 1050 1100 1150 1200 1250 1300 1350 1400
WAVENUMBER (em™)

WAVENUMBER (em™')




1AN/N ratio on Jupiter

VUV absorption cross sections of *NH; and °NH,



UNH3 & 1°NH; on Jupiter
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CH,, GsH, and NH; Iin Jupiter

Absolute cross sections of CH, and CH_D at 298 K

2

q : 2
Absorption cross section / em
Cross section / cm

115 120 125 130 135 140 145 150 120 130 140
Wavelength / nm
Wavelength / nm

a
=
c
()
=
3]
@
P
12
w
o
S
O

180 190 200 210 220
Wavelength / nm




1ave been done

A

Z » Mars
4

piter

D,0D —> Comets



Makemake -_-.'.:3,'5 _




Absorptlon cross sectlons 'zof mterstellar
3 s have been extensively measured in
JV¥lange near room temperature, but
ta $OMMow temp erature’ are lacking.
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Cassini-Huygens Mission to Saturn
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. FUV Photolysis of CH, Dispersed in Solid N,
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FUV photolysis on pure solid CH,
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FUV photolysis on pure solid CH,
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FUV photolysis on pure solid CH,
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FUV photolysis on pure solid CH,
cZHZ

0.08 = | " . | '”I R | 'I'I'I R |
CH, (v
5006 fR0m_ A M
@] : : : :
= 140 nm : : J N .*
@ |
@ .04 L6500 ) A
“— CZHG(VNE C,Hy(v,,)
@) v ?He(vl) CH/v) °: C,H (v
@ 175 nm, AV v N v
c
© 0.02 185 LU
g < 190 nm"a'z("s)
. AN R AR Ny b
©
200 nm
OOO . M - i [ - 1 o 1 o 'I';I o I‘ o 1 o 1 o 1
3300 2900 15001400 1000 900 800 700 600

wavenumber / cm™



relative yield (a. u.)

160
120
80
40

808
600
400

200

160
120
80
40
0o

(C) NN C.H,

(d) I c.H,

120 130 140 150 160 170 180 190 200
wavelength / nm




Photolysis of solid CH,121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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Photolysis of solid CH,;121.6 nm at 3 K
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FUV Photolysis of CH,/Ne=1/1000 at 3 K
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Table 2. Products of Photolysis at 120 nm of Isotopic Methanes Dispersed (1:1000) in Neon at 3 K and Wavenumbers of Their
Absorption Lines Assigned from the Indicated Sources

CH,/Ne “CH,/Ne CD,/Ne
species wavenumber(cm ') species wavenumber(cm ") species wavenumber(cm ')
fcr 2730 SCH 27253 D 20306 |
CO 20411 SCO 20940 CO 21412
CH.  602.6/604.5/6202 (v,), 1392.0 (1) UCHy _ 597.7/599.6/614.9 (15), 1387.1 (v) _ CD; _ 1027.8 (), 23789 (v3)
fcH 18359 (1) BCH 17760 (us) CD 17376 (uﬁ
C,0 19748 (1) BC,0 19649 (v,) C,0 19748 (1))

CH, 7322 (), 13296 (vy4us), 32822 (1y), 32963 BCH, 7301 (1s), 1319.1 (pytvs), 32787 C.D,  539.7 (us), 2436.3 (15)
(vytugtys) (v5)

CH; 8953 (vg) BC,H; 8895 (uy) C.D; 7039 (1g)

CH, 9504 () BCH, 9455 (1) C,D, 7201 (v-)

C,  2036.4/20387/2041.1/2043.5 (1) BC,  1958.4/1960.5/1962.9/19649 (1) G, 20{3?.0,@033.5,@041.1;1043.5

lca 18275 (1) BCH 17622 (1)) CD 17736 () I

15472 (vs)
IC4H 2063.5 (vy)

OC, 14871 (u2)

1547.0 (v

BC,H 19846 (uy)

CD 20519 (vy)

CyH,

3330.5 (v

3313.7 (vy)
]3g ZQEZ Q “ 1‘)

CD, 25974 (vy)

CD 19175 (1)

Cs
G,

)
A
|c5H 1955.6 (v3)
)
)

1958.4 (v
21352 (v,

“Unidentified line.

BCH 18812 (1;)
By 1890.2 (v,)
BC, 20534 (v,)

Cs 19587 (1)
C, 2135.1 (v,)
U 1937.0




Table 2. Products of Photolysis at 120 nm of Isotopic Methanes Dispersed (1:1000) in Neon at 3 K and Wavenumbers of Their
Absorption Lines Assigned from the Indicated Sources

CH,/Ne “CH,/Ne CD,/Ne
species wavenumber(cm ') species wavenumber(cm ") species wavenumber(cm ')
CH 27329 BCH 27253 CD 20306
CO 21411 BCO 20940 CO 21412
CH;  6026/604.5/6202 (1), 1392.0 () BCH;  597.7/599.6/614.9 (15), 1387.1 (1)  CD;  1027.8 (1), 23789 (15)
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C.H, 9504 (1) UCH, 9455 (1) CD, 7201 (1))

|E: 2036.4/2038.7/2041.1/2043.5 (v;) BC,  1958.4/1960.5/1962.9/19649 (v3) C;  2037.0/2038.5/2041.1/2043.5

H 18275 (1)
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SCH 17622 (vo)

7
1773.6 (v

Bc, 14871 (1y) Cy 15470 (13)
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“Unidentified line.




Observation in Space




Observation in Space

Observatory: millimeter wave, submillimeter, microwave
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FUV Photolysis of methane/Ne at 3 K
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FUV Photolysis of methane/Ne at 3 K
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FUV Photolysis of CH,/H,/Ne=1/6/1,000 at 3 K
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i Carbons'in Space

Carbon chains

Carbon nanotubes Nanodiamond
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Comparison of the Infrared Emission Spectrum of the Orion Bar
to the Absorption-Spectrum of a Mixture of PAH Cations.
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Comparison of the Infrared Emission Spectrum of the Orion Bar
to the Absorption-Spectrum of a Mixture of PAH Cations.
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 Observation C.6f; and PAHs
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