

The Next Generation Lighting Technology

- Semiconductor Lighting

Y.S. Liu

Opto-Electronics & Systems Laboratories (OES)
Industrial Technology Research Institute (ITRI)
Taiwan, ROC

Semiconductor Lighting

- ●發明
- 物理/科技
- •應用/生活
- ●產業

Semiconductor Lighting

發明

- 一創意
- 一創新
- 創造

Major Milestones in Photonics

- Invention of Light Bulbs (1882)
 - Beginning of man-made electrically-generated light
- Invention of Coherent Light (1960's)
 - Beginning of quantum optics (coherent, collimated ...)
 - Invention of transistors(1948)
- Nano-photonics (2000s)
 - Beginning of a new un-chartered territory
 e.g. Photonic crystals, QD devices, holey fibers

光電科技的發展過程中、充滿 了突破性技術的發明,因而給 人類生活帶來革命性的改變! 1882年愛迪生發明白熾燈、這 是人類第一次用電產生的光源! 這個發明不但是有史以來、人 類第一次真正解脫了黑暗的約 束、更開創了近代光電科技發 展的首頁!

Let There Be Light

- Genesis

BC- 1880's

Edison's Lamp - 1882

"We are striking it big in the electric light, better than my vivid imagination first conceived. Where this thing is going to stop Lord only knows."

- Thomas Edison October 1879

A 6. 2000 医硬膜

TEGison's Incandescent Lamp - 1882

September 4, 1882

"The first step is an intuition- and comes with a burst, then difficulties arise. - This thing gives out and then that- 'Bugs' -as such little faults and difficulties are called- show themselves and months of anxious watching. Study and labor are required before commercial success or failure- is certainly reached.... I have the right principle and am on the right tracks, but time, hard ward, and some good luck are necessary too."

- Thomas Edison, describing his inventive process, 1878

Traditional Lighting Sources

Incandescence bulbs

Halogen bulbs

Compact fluorescence bulbs

Fluorescence bulbs

100

EFFICACY (LUMENS/WATT)

10

White LED - 1996

LED Light Bulbs - 2000

White LED Efficiencies

OES Evolution of Lighting Technologies

Beginning of Nano-technology - 1900s

1909年愛迪生創設的實驗室來了一位年輕的化學家 Irving Langmuir、他繼續做燈炮相關問題的基礎研 究、他發現如果把氮及氬氣加到燈炮裏可以大大增 長燈炮的壽命! 他還發明了單分子層(mono-layer) 的觀念及製作單分子層的工具、Langmuir的研究建 立了表面物理科學的基礎、因而得到1932年的諾貝 爾獎! 他的研究也可以說是奈米科技研究的開始! 從這些發展、我們可以看出光電科技和奈米科技密 切的關聯性! 劉容生."奈米科技". 2004

OES Incandescence, fluorescence & LED Lights

Evolution of Semiconductor Lasers

N. Ledentsov, IEEE J. Select. Topics Quantum Electron., 6, 439, 2000

Solid State Lighting Technology

- ●發明
- 物理/科技
- •應用/生活
- ●產業

LED (發光二極體)

TOES Main Technology for White LED

RGB LEDs

UV LED + RGB Phosphor

UV LED + RGB phosphor

Efficiency

Excellent

Wavelength depended

CRI

Excellent

Excellent

Binary Complimentary

Blue LED Yellow phosphor

Good

Fair

白光LED製作流程

•單晶基板製作:

HVPE生長、Laser lift-off (前瞻計劃)

•磊晶生長:

MOVPE (業界科專)

•元件製作:

透明導電膜、金屬電極、光罩、蝕刻、磨薄(業界科專)

•<u>封裝製作</u>:晶粒黏著打線、覆晶黏著、 螢光粉塗佈、樹脂選用、高散熱設計、 光學設計(能專+技轉業界)

Compound Semiconductor V tochnologies developing in Taiwa

GaN Research at ITRI/OES

LED MOCVD Growth and Device Fabrication

LED Lighting and Lighting Application

GaN Research at ITRI/OES

MOCVD Growth AIXTRON 2400G3-H1 **HVPE** Growth **Device Processing Device Package**

Measurement

LD MOCVD Growth and **Device Fabrication**

> **HVPE** Growth **GaN Substrate**

GaN Quantum Dots

OES Comparison of 1W White-LED Lamp

Thickness 5mm 15.7mm

Weight 1.85g 6.14g

Area 17×17mm² 25×25mm²

Solid State Lighting Technology

- ●發明
- 物理/科技
- •應用/生活
- ●產業

画 OEs 商品化白光LED與常用光源之比較

光源種類	功率 (W)	外部 量子效率 (%)	典型 發光效率 (lm/W)	壽命 (hrs)
白熾燈 Incandescent	15	5	8	1,000
	100	9	15	1,000
長壽命白熾燈	135	7	12	5,000
鹵素燈	20	7	12	3,000
	300	14	24	3,000
精緻型鹵素燈Halogen	50	7	12	2,500
精緻型螢光燈(省電燈泡)	11	17	50	10,000
螢光燈Fluorescent	30	27	80	20,000
White LED (blue LED + YAG) White LED (blue LED + R+G)	0.07 0.07	10* 18*	30 25	>10,000 >10,000

^{*}不含螢光粉之轉換效率

Performance and cost changes of LED

註: 以商業上之紅光LED產品為計算基準, 數據由H.P. 公司之R Haitz提供.

Types of Lighting Sources used in Taiwan

40W直管螢光燈

資料來源:工研院能資所

省電燈泡

水銀燈

	年消耗量 (萬支)	壽命 (小時)	負載用量 (萬支)
40W直管螢光燈	3,600	10,000	9,400
20W直管螢光燈	3,800	7,500	11,400
10W直管螢光燈	500	7,500	1,300
省電燈泡	1,000	6,000	2,055
白熾燈泡	3,250	1,000	1,370
鹵素燈泡	400	2,500	342
水銀燈	80	12,000	329
高壓鈉燈	70	12,000	115
複金屬燈	50	9,000	92

20W直管螢光燈

白熾燈泡

高壓鈉燈

10W直管螢光燈

鹵素燈泡

複金屬燈

Energy Consumed by types

各類光源之耗能比例

LED for Traffic Lights

OES LED vs Incandescence Light bulbs for **Traffic Lights Applications in Taiwan**

Light Sources	LED	Incandescence Lights	Notes	
Watt/Bults	/Bults 10W (0.01KW) 116W (0.116KW)			
Total Intersections	45,000	45,000		
Total traffic lights units	360,000 (8 x 45,000)	360,000 (8 x 45,000)	8 lights per intersection	
Daily electricity consumed (degree)	86,400 (0.01 x 360,000 x 24)	1,002,240 (0.116 x360,000 x 24)	24 hour per day	
Yearly electrical energy consumed	31,536,000 (86,400 x 365)	365,817,600 (1,002,240 x 365)		
Yearly cost (NTD\$)	80,101,440 (31,536,000 x 2.54)	929,176,704 (365,817,600 x 2.54)	Cost per unit - NTD \$2.54	
Total yearly cost (NTD\$)	80,100,000 (NTD)	929,170,000 (NTD)		

註:1.根據台電(網路上之資料顯示),87年度家庭用電每度平均售價:NT\$2.54;

2. 若使用LED號誌燈,台灣地區每年可省下電力334,281,600度(約3.34億度電力);

3.若使用LED號誌燈,每年實際可省下92,917萬元-8,010萬元=84,907萬元(約NT\$8.5億元)

Demonstration of White-LED Lighting in ITRI/OES

Exhibition Room in ITRI/OES

50W Halogen Incandescent → 6W LED Lamp

Demonstration of White-LED Lighting in ITRI/OES

Meeting Room in ITRI/OES

20W Halogen Incandescent →9W LED Lamp, Power Saving > 50%

OES in Taipei Municipal Social Education Hall

Taipei Municipal Social Education Hall (2F Lobby)

20W Halogen Incandescent >4W LED Lamp, Power Saving: 80%

120W PAR38 Bulb →18W LED Lamp, Power Saving: 85%

JK Yao Architectual Lighting Design, Taipei, Taiwan

大公設計顧問事務所

- 1999 International Lighting Design Association
 - IALD Award of Excellence
- 2003 International Lighting Design Association
 - I ALD Award of Merit
- 2001 International Lighting Design Association
 - IALD Compendium of Good Practice
- 2002 International Lighting Design Association
 - I ALD Annual Award Judge

JK Yao Architectual Lighting Design, Taipei, Taiwan

大公設計顧問事務所

Image #1
Building in Daylight and Twilight

LED at Mullion Joint -Day and Night

應用例-太陽光發電LED路燈

- •內建蓄電池,不需電線架設
- •5年免保養
- •7天內無日照仍可照常使用(假設每天使用10小時)
- •壽命:7萬小時(20年)
- •於無法使用日光燈之寒帶地區還可使用
- •於海岸或河川地區,系統70%浸水仍可正常運作
- •緊急災害期間可正常運作
- •很容易加裝計時器或感測器作 減光控制,以延長蓄電池之使 用時間

Directions of LED Application

Source: KOPTI

LED應用發展趨勢

Display應用 1980-

儀表煞車燈

移動式看板

戶外看板

特殊照明 1995-

交通號誌

小尺寸LCD背光

景觀照明

車內外照明

白光照明 2005

輔助照明

室內景觀照明

一般照明

Solid State Lighting Technology

- ●發明
- 物理/科技
- •應用/生活
- 產業

OES Growth of Optoelectronics Industry in Taiwan

Taiwan's products ranked as top 3 WW in 2002

Top 1 (15 Items)	Top 2 (8 Items)	Top 3 (3 Items)
 IC foundry IC Packaging Mask ROM CD-R CD-RW DVD-ROM CD-ROM LCD Monitor Wireless LAN ADSLModem Cable Modem NIC Hub SOHO Router Notebook PC 	 IC Design IC Resistor Large TFT-LCD Module S&M TFT-LCD Module LED Ethernet Switch Analog Modem Mother Board 	 DRAM S&M TN/STN LCD Module PDP IC - 6 items Optoelectronics - 11 Communication - 8 Information technology -

Taiwan is one of the leading producers in the world in optoelectronics (USD\$17.8B), electronics & IC (USD\$18.7), communication (USD\$14.2B) and information technology (USD\$21B) - relateded products

Semiconductor Lighting Industry Association

Formed 2002/10 by companies of LED and lighting industries to develop and promote the technology, standard and applications of LED for lighting applications. The membership has grown from 30+ to 50+ companies.

Next Generation Lighting R&D Consortium

2002/9/19 - 11 LED companies formed R&D consortium to develop technologies NT\$ 10M

Goal: 40 lumen/W NT\$383M / 2 yrs

(R&D target: 100 lumen/W)

Phase 1: 2002 - 2003

Phase 2: 2 year, 2003/12-2005

Epitaxy (Up-stream)

Processing/Fabrication (mid-stream)

Packaging/Modules (Down-stream)

Lamp Design & **Applications** (Lighting companies)

III OES White LED Efficiency Roadmap

Future Impacts

Energy

- Equivalent electric saving to 11B degree.
- Reduce import energy resource dependency.
- Improve lighting efficiency.

Economic

- Expedite white LED product development.
- Industry investment: NT\$2B+.
- LED revenue NT\$4B+.
- Photonic industry revenue to NT\$40B by 2005.

Industry

Environmental

- CO₂ emission reduction.
- No mercury pollution.
- Reduce waste volume.
- Vibration resistance.

- Vertical integration.
- Provide new product for new lighting applications.
- Improve IP protection.

National Initiatives at China, Korea, Japan and USA

National Solid State Lighting Projects in Mainland China

By Dr. Lianghui Chen

- "Chinese National Semiconductor Lighting Engineering(SLE)" started from June 17,2003.
 Investment of SLE is 15 M USD for 2003-2005, and mainly from Government.
- "Semiconductor Lighting Industrialization
 Developing Technology Project" in Oct. 2003.
 Looking for 5-10 times budget of SLE, and mainly from Industrial companies.

National Project in Mainland China (2006 - 2020)

- National stratagem study and consultation report on SSL is underway.
- The target of SSL is:
 - 30% lighting energy saving, the same with electricity generation of TGP(Three Gorges Project)
 - Budget: 5% the investment of TGP
 - Period: 15-20 years, the same with TGP

Korea National R&D Program on LED

"Next Generation Growth Engine of Korea" Program ('04-08)

- 10 High Growth Big Industries were Selected (about 2 B\$)
Display Industry: LCD, PDP, LED, Organic EL,
3D, e-Paper

R&D Fund for LED: about 120 M\$ / 5 years

Fund for Infra, Training & Education, Standardization & Int'l Cooperation will be additionally supported.

High Growth 10 Large Industries

Digital TV & Broadcast,
Intelligent Robot,
Next Generation Semiconductor,

Display,

Next Generation Car,

Net Generation Mobile Communication

Intelligent Home Networks, Next Generation Battery,

Digital Contents & SW Solutions, Bio New Medicine & Chip

TIPE OES Japan's "Light for the 21 Century"

Goal: GaN-based Light Source w/120lm/W by 2010

Period: 1998 ~ 2002

Budget: US\$50M / 5 yrs.

- Blue LED + YAG:
 20% (external QE) at 20mA,
 > 20 lm/W, 6,500K, R=85,
 Life 20,000 hours.
- UV LED + RGB :
 24% (external QE) at 20mA,
 Power 16 mW @ 20mA.
 Wavelength = 382 nm
- Better temperature stability UV LED as compared with Blue-based.

Worldwide National Programs on LED

Japan	USA	Taiwan	Korea
Light for the 21 st century	Next generation lighting initiative (Vision 2020)	Next generation illumination light source project	LED and Semiconductor Lighting Korea
120 lm/W light source	200 lm/W light source	Infra & Development 50 lm/W 2005 (prod.) 75 lm/W 2005 (lab)	80 lm/W (2008) 130 lm/W (2013)
Phase I: 98.9~2003.8 Phase II: 03.9~08.8	Phase I: 2002~2011 Phase II: 2011~2020	Phase I: 02.3~02.8 Phase II: 02.8~05.7	Phase I: 2004~2008 Phase II: 2009-2013
1 stage: 6 b Yen 2 stage: begin in 2004	50M \$/year For 10 years	100M\$ for 2002 15M\$/year 2003-2005	About 200 M\$/ 5 years
NEDO+ METI: Yamaguchi Univ (4 Univ. + 13 Companies + 1 Association)	OIDA	11 Companies Consortium	Institute + Univ + Company total Consortium

Opportunities for White LED

- Cell phones (1.4B units LEDs)
- Automobiles
- LCD-TV back light (>100M units/year)
 - Mitsubishi announced LED-back light for 17.5"
 TFT-LCD
- Flashlight for DSC
- PTV light sources

大尺寸高彩度LCD電視

100% NTSC

No Mercury

70% NTSC

3-5% Hg

Highly efficient and long lifetime light emitting for better life.

Solid State Lighting Technology

發明:

- 一創新
- 創意
- 一創造

Speaker's Biography

Y.S. Liu

Fellow and VP, Industrial Technology Research Institute General Director, Optoelectronics & Systems Labs.,

- Ph.D. Cornell University
- BS, National Taiwan University
- Experiences:
 - Program Director, DARPA Advanced Research Projects
 - Principal Scientist, GE Corporate Research & Development Center
 - Adjunct Professors- New York State University, Albany and RPI
 - President, Optical Engineer Society, ROC
 - Board member, Taiwan Electronics and Electrical Manufacturers Association
 - Borad member, IEEE, Taiwan chapter
 - President, Taiwan Optical Communication Industry Alliance
 - President, Solid State Lighting Association, Taiwan
- Honors:
 - ITRI Fellow
 - Fellow of OSA (Optical Society of America)
 - Fellow of PSA (Photonic Society of American-Chinese)
 - Fellow of PRMS (Asian Pacific Materials Society)
 - "50 R&D Stars to Watch", Industry Week
 - 2003 Recipient of the 10th Tung Yuen Science and Technology Award

Thank You

Y.S.Liu liuys@itri.org.tw