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Publicity

� “Giving it a whirl” Dallas Morning News, Sep. 6 (1999)

� “Spintastic!” NewScientists, Jun. 16 (2001), p.13

� “'Spin' could be quantum boost for computers” New York Times, Aug. 21, 
2001

� “A new spin on computing ..” San Francisco Chronicle, Dec. 10 (2001)

� “Here’s a switch, for quantum computing” USA Today, Jan. 28 (2003)

� “New spin for electronics” Computerworld, Aug. 21 (2003)

� Also in Photonics Spectra (2003) & Chemistry World (2004)

“Spintronics” appeared 
in APS News Jun. 1998;

in scientific journals from 1999

“Spintronics” appeared 
in APS News Jun. 1998;

in scientific journals from 1999



Introduction

� Electronics
�The study and use of devices that operate by 

controlling electrons

Spintronics

Spins of

or electrically charged particles

� Spin-based Electronics
�Fabrication of devices using

�Creation of a non-equilibrium spin density
�Manipulation of spins by external fields
�Detection of resulting spin state



Some Interesting Old Stuffs

� Hanle Effect
�Wood and Ellett (1923/1924)
�Hanle (1924)

�Depolarization of luminescence by transverse 
magnetic field

� Optical Pumping
�Brossel and Kastler (50’s-60’s)
�Non-equilibrium distribution of atomic angular 

moments
�Creation, manipulation, and detection



History - continue

� Lampel (1968)
�Application of optical pumping in atomic physics to 

semiconductor (Si)
�Conduction-band electrons, rather than the bound elections 

in atom

� Ecole Polytechnique (Paris) and at Ioffe Institute (St. 
Petersburg) (70’s – 80’s)

� Tunnelin Magnetoresistance (TMR, 1975)
� Spin Valve Effect

�Giant Magnetoresistance (GMR, 1988)
�Room-temp. GMR (1991)

Magnetoelectronics



Spin Interactions in Semiconductors

Magnetic 
Interaction

Direct dipole-dipole int. 
between magnetic 
moment of paired 

electrons 

Magnetic 
Interaction

Direct dipole-dipole int. 
between magnetic 
moment of paired 

electrons 

Hyperfine 
Interaction
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e- and nuclear spins 
Especially the non-
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Spin-orbit 
Interaction

“Relativity”: effective 
B=(v/c)×E

Spin orientation, 
detection, relaxation

Spin-orbit 
Interaction

“Relativity”: effective 
B=(v/c)×E

Spin orientation, 
detection, relaxation



sz= -1/2

Optical Spin Orientation and 
Detection
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Time-Resolve Pholomuniescence

Oestreich et al. 1996



Spin Relaxation

� Dissipation of initial spin state
�“Spin decoherence”

� The result of fluctuating action in time magnetic 
fields
�Effective (not “real”) fields

�Amplitude, or the precession frequency ω

�Correlation time, τc



Spin Relaxation Time τs

t/τc × (ωτc)2 = ω2τct

# of random step

squared angle

�ωτc << 1
�Spin vector experiences a slow angular diffusion

�ωτc >> 1
�At a time ~ 1/ω, spin projection          random field is

�After time τc, spin polarization disappears.

transverse to

along

destroyed

preserved

� For a time interval t, the total squared angle is

1/τs ~ ω2τc

~ 1

to define τS

τs >> τc

τs ~ τc



Spin Relaxation Mechanisms

� Elliott-Yafet
�Relax via ordinary momentum scattering if the lattice ions 

indeuce spin-orbit coupling in e- wave function
�System posses a center of symmetry (e.g. elemental metals)

� D’yakonov-Perel’
�System lacks inversion asymmetry

�Spin precesseion with Larmor feq. ΩΩΩΩ(k)=(e/m)Be(k), along 
with momentum scattering, leads to spin dephasing.

� Bir-Aronov-Pikus
� involving a simultaneous flip of spins due to electron-hole 

exchange coupling 

� Hyperfine interaction



Spin Relaxation Mechanisms

Elliot-Yafet: metal, small-gap 
semicoductor (InSb)

D’yakonov-Perel’: n type III-V 
(GaAs) or II-VI (ZnSe)

Bir-Aronov-Pikus: p type 
semiconductors



D’yakonov-Perel’ Mechanism in 
Semiconductors

� Bulk III-V
� Larmor freq. 

�Spin splitting ~ k3 (Dresselhaus, 1955)

� Two-dimensional III-V systems
� Two distinct Hamiltonians that contribute

�Bulk inversion asymmetry (BIA)
�Structural inversion asymmetry (SIA)

�Both give spin splitting ~ k, but predict a different 
dependence of τs on the QW orientation relative to the 
principal axes
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�Structural inversion asymmetry
�External field or composition

Origins of Inversion Asymmetry

�Bulk inversion asymmetry
�Zincblende structures

 

  

 

�Interface asymmetry
�Non-common atom InAsInAsInAsInAs GaSbGaSbIn

Sb

In
Sb

Sb

SbAs

As

As

As



Rashba Spin-Orbit Interaction
� 2D Electron Gas
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How To Determine Spin-orbit Coupling 
constant

Das and Datta, PRB(1989)
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