Recent Research Topics of Solid State Electronics Laboratory in the Department of Physics in Tsing Hua University

Juh Tzeng Lue

What includes in solid state electronic laboratory?

#### The characterization of amorphous carbon nitride films grown by RFCVD method Structure



#### Introduction

In 1985, Cohen developed an empirical model to express the bulk modulus of covalent solid.

Liu and Cohen predicted that the bulk modulus of hypothetical compound  $\beta$  -C3N4 may be close to that of diamond which has a structure similar to the  $\beta$  -Si3N4.

In addition to super hardness, it exhibits to good insulating property.

Representation of the  $\beta$  -C3N4. The carbon and nitrogen atoms are depicted as gray and blue spheres, respectively.

Structure of carbon nonatubes

# Carbon: $1s^2$ , $2s^1$ $2p^3$ $sp^1$ , $sp^2$ , $sp^3$







## Sumio Iijma

#### Single-walled carbon nanotube, SWCNT



#### Multi-walled carbon nanotube, MWCNT



FIG. 2. AFM images of a Fe film annealed at 660 °C for 10 min. The corresponding thickness of the Fe film is 20, 10, and 5 mm in images (a), (b), and (c), respectively. The particle size distribution was derived from the AFM images.





自製的微波/射頻輔助熱燈絲化學 氣相沉積法製作

#### 變溫場發射結果





根部成長



頂端成長

溫度變化由室溫到低溫 (300K~20K) 結果顯示場發射特性並不 隨溫度降低而改變



#### 單層奈米管(SWNT)的影像

![](_page_5_Picture_11.jpeg)

大面積,高密度均勻分散 的指向性多層奈米管 (MWNT)

![](_page_6_Picture_0.jpeg)

The model dwelled in reference (C.L. Chen, C.S. Chen, J.T. Lue, Solid State Electronics 44 (2000) 1733.

$$\begin{split} J_{total} &= J_{c} + J_{v} \\ J_{total} &= a_{1}T^{2}e^{-\theta_{kT}^{\prime}}e^{\frac{-b\chi^{3/2}}{\beta F}} + a_{2}\frac{(\beta F)^{2}}{\chi + E_{g}}e^{\frac{-b(\chi + E_{g})^{3/2}}{\beta F}} \\ a_{1} &= \frac{qmk^{2}}{2\pi^{2}\hbar^{3}} , \qquad a_{2} = \frac{q^{3}}{16\pi^{2}\hbar t(y)} , \\ b &= \frac{4\sqrt{2m}}{3q\hbar}v(y) , \end{split}$$

Where *F* is the external electrical field,  $\beta$  is the field enhancement factor, *v*(*y*) and *t*(*y*) are tabulated functions involving elliptic integrals, *x* is the electron affinity,  $\theta = E_{cs} - E_f$  is the difference energy between interface conduction band and Fermal level.

![](_page_8_Figure_0.jpeg)

# 國立清華大學物理系 呂助增教授 微波頻段下正常態與非正常態金屬膜之電導率與頻率及溫度之關係

![](_page_9_Figure_1.jpeg)

## Conductivity dependence on f

$$\sigma(f) = 5.12 \times 10^{-38} \times R^2 N e^{-2\alpha R - \frac{5.8 \times 10^{19}}{R^3 N}} f$$

![](_page_10_Figure_2.jpeg)

**Table 1.** The measured data for various Q factors to derive the dielectric constant of silver nanoparticles where  $f_0$  (GHz) is the resonance frequency,  $Q_0$  is the empty Q factor,  $Q_{01}$  is that for pure alumina powder and  $Q_{02}$  is that for filled with mixed powder with a filling factor f = 100.

| Particle<br>size (Å) | $f_0$ (GHz)    | $Q_0$ | $Q_{01}$ | $Q_{02}$ | ε              |
|----------------------|----------------|-------|----------|----------|----------------|
| 310                  | 14.164 125 000 | 3061  | 2288     | 1462     | -44.06 + 7.89i |
| 371                  | 14.166 687 500 | 3061  | 2288     | 1688     | -47.12 + 5.32i |

![](_page_11_Figure_2.jpeg)

Figure 1. Construction detail of the dielectric resonator in which the radii of the inner hole, the sapphire ring and copper cavity are a, b and d, respectively, with a length of L.

![](_page_12_Figure_0.jpeg)

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

# Microwave DR for penetration depth

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

Narrow rejection filter composed of metal /insulator multilayers band Ag/MgFz 10 Layers nd=1.38, n= 1.52 d1=3.7×10-7m .d2= 3× 15 1 m p=8= <10A R madi Ei Nasi Ei Rb ~nd.d 2Nt 01.3 EL= tick 1=1,2,3 3.2 Photon energy (eV) to nud,

![](_page_17_Picture_0.jpeg)

![](_page_18_Figure_0.jpeg)

> : surface strain enhanced surface dipole

For either s- or p-polarized pump radiation, the SH field of Si(111) can be expressed as

$$E_{p}^{2\omega} = a_{p}(\theta) + c_{p}\cos(3\varphi)$$
$$E_{s}^{2\omega} = b_{s}\sin(3\varphi)$$

If  $a_p / c_p = 0$ , the SH pattern is sixfold symmetry; if  $a_p / c_p = 1$ , it is threefold.

 $a_{p}$ : isotropic constant

 $b_s$ ,  $c_p$ : anisotropic constants

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

#### Proposed model

![](_page_22_Figure_1.jpeg)

g is the anisotropy energy density

#### Single domain particles

. Nanoparticles usually exhibit an uniaxial magnetic anisotropy

![](_page_23_Figure_2.jpeg)

.As the size of nanoparticles decreases, when  $KV \le k_BT$ , magnetic nanoparticles exhibit superparamagnetic relaxation, i.e., thermally fluctuations of the magnetization vector among the easy axis of magnetization.

#### Macroscopic quantum coherence?

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

Size II

## Speculative diagram for surface

![](_page_26_Picture_1.jpeg)

uced quantum. Physical pictures of Insitionatic nanoparticles

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

Quantum paramagnetism

# Geomagnetic intensity & magnetic declination

![](_page_27_Figure_1.jpeg)

# Iron-containing cells (trophocytes) and fat cells (oenocytes)

![](_page_28_Picture_1.jpeg)

### 純化樣品A之EPR變溫光譜圖(30k-4k)

![](_page_29_Figure_1.jpeg)

Magnetic Field(Gauss)

## (b)MFM實驗數據

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

AFM之表面影像

TEM影像

### 改變外加磁場方向,所獲的MFM之影像(鱒魚)

![](_page_31_Figure_1.jpeg)

Diebel, C. E. et al. *Nature* **406**, 299 (2000)

#### MFM之表面影像與phase影像

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

#### MFM之phase影像

### MFM之表面影像