Characterization of Solid State Materials Using Synchrotron Radiation

Yun-Liang Soo

Department of Physics, Rm104 National Tsing Hua University Telephone: 574-2799 e-mail: soo@acsu.buffalo.edu

National Synchrotron Light Source

•Synchrotron Radiation -High-intensity -Tunable -Collimated -Polarized

Bend Magnet Spectrum

 2×10^{4}

 3×10^{4}

 4×10^{4}

X-rays

- Soft X-rays (Vacuum Ultraviolet) and Hard X-rays
- Typical photon energy 100eV-100keV
 K level of Be to Rn
- Typical wavelength 0.1Å-100Å
 - Size of Atom to Protein

Experimental setup for GIXS and XRD at beamline X3B1 NSLS

Mn/GaAs digital alloys

[G. Kioseoglou et al. APL 80, 1150(2002)]

X-ray Diffraction of single-crystal thin films

Bragg condition $q_z=2 m/D$

X-ray Powder Diffraction

Intensity

Radiation Hutch

Experimental Setup for X-ray Absorption Spectroscopy at Beamline X3B1

National Synchrotron Light Source

Near Edgde X-ray Absorption Fine Structure (NEXAFS)

MBE grown (In,Mn)As

MBE grown (In,Mn)As

X-ray Magnetic Circular Dichroism (XMCD)

XMCD of (Ga,Mn)As random alloy and Mn/GaAs digital alloy

[Y. L. Soo et al. PRB 67, 214401 (2003)]

Maximum asymmetry rate $(I_- - I_+)/(I_+ + I_-)$ at 638.7eV: (Ga,Mn)As: 39%; Mn/GaAs: 42% ;Theoretical: 58%

Ferromagnetically ordered Mn: (Ga,Mn)As:>66%; Mn/GaAs:>71%

Experimental setup for ADXRF at beamline X3B1 NSLS

Experimental setup for XEL measurements at Beamline X3B1 NSLS

Synchrotron Radiation X-ray techniques

- Long-range-order (LRO) structure: XRD
- Short-range-order (SRO) structure: EXAFS, NEXAFS
- Probing selective element in ferromagnetic ordering: XMCD
- Variations of density profiles of constituent elements in solid: ADXRF
- Interfacial morphology: GIXS
- Probing x-ray to visible down conversion route/ relation between specific elements and itinerant electrons: XEL