Raymond T. Tung* Physics, Brooklyn College

OUTLINE

Introduction

Band Offset : What is it? Why is it important?

Conventional Band Offset Theories - Blame it on the

"interface states"

THE CITY UNIVERSITY OF NEW YORK

Brooklyn Gollege

What's wrong with the "interface states" explanation?

Let's ask the chemists how to solve this solid state

physicists' problem!

Implications for Current Technological Interfaces

Metal-organic and organic-organic interfaces High-K Oxide/Si interfaces

1. 414 - P

Brooklyn Gollege

Material Interfaces of Current Interest

TT LANS P

Brooklyn Gollege

Band Alignment (Offset) Problem

ST. 412 - 14

Brooklyn Gollege

Band Offset and Schottky Barrier Height

Band Offset and Schottky Barrier Height

Semiconductor Heterojunction

THE CITY UNIVERSITY OF NEW YORK

PERSONAL PROPERTY

Brooklyn Gollege

Schottky Barrier

Electrostatic Potential And Schottky Barrier Height

THE CITY UNIVERSITY OF NEW YORK

Brooklyn Gollege

The "Schottky-Mott" Relationship

"ISOLATED METAL AND SEMICONDUCTOR"

semiconductor electron affinity

Brooklyn Gollege

The Fermi Level Pinning Phenomenon

Interface behavior parameter (S-parameter) reflects how strongly the SBH depends on the metal (work function).

Interface Chemistry

Non-Interactive Schottky-Mott Model:

THE CITY UNIVERSITY OF NEW YORK

Brooklyn Gollege

$$\Phi^o_{B,n} = \phi_M - \chi_S$$

FL pinning suggests Interface Interaction:

$$\Phi_{B,n}^{o} = \phi_{M} - \chi_{S} + e \Delta_{gap}$$

Brooklyn Gollege

Interface Gap States: Fixed-Separation Model

$$\Phi_{B,n}^{o} = \gamma_{GS}(\phi_M - \chi_S) + (1 - \gamma_{GS})(E_g - \phi_{CNL})$$
$$\gamma_{GS} = \left(1 + e^2 \delta_{gap} D_{GS} \varepsilon_{gap}^{-1}\right)^{-1} \longleftrightarrow S_{\Phi}$$

Conditions for systematic analysis:

- (1) Interface states are independent of the metal.
- (2) Interface gap (distance) is large, > 1nm.

Brooklyn Gollege

Single Crystal Schottky Barriers

Schottky barrier height depends on interface structure ! Fujitani and Asano 1990

Brooklyn Gollege

Ideality Factor

Thermionic Emission Theory

n: ideality factor

Aboelfotoh, 1988

$$\frac{\partial \Phi^{o}_{B,n}}{\partial V_{a}} = \frac{e^{2} \delta_{gap} D_{GS} \varepsilon^{-1}_{gap}}{1 + e^{2} \delta_{gap} D_{GS} \varepsilon^{-1}_{gap}}$$

$$n = \left[1 - \frac{\partial \Phi_{Bn}^{o}}{e \partial V_{a}}\right]^{-1}$$
$$= 1 + e^{2} \delta_{gap} D_{GS} \varepsilon_{gap}^{-1}$$

Fixed Separation Model: Internal Inconsistency

THE CITY UNIVERSITY OF NEW YORK

Predictions of Fixed Separation Model

$$S_{\Phi} = \left(1 + e^{2} \delta_{gap} D_{GS} \varepsilon_{gap}^{-1}\right)^{-1}$$

$$n = S_{\Phi}^{-1}$$

$$n = 1 + e^{2} \delta_{gap} D_{GS} \varepsilon_{gap}^{-1}$$

Brooklyn Gollege

Interface Gap States: Fixed Separation Model

$$\Phi_{B,n}^{o} = \gamma_{GS}(\phi_{M} - \chi_{S}) + (1 - \gamma_{GS})(E_{g} - \phi_{CNL})$$
$$\gamma_{GS} = \left(1 + \frac{e^{2}\delta_{gap}D_{GS}}{\varepsilon_{gap}}\right)^{-1} \iff S_{\Phi}$$

Conditions for systematic analysis:
(1) Interface states are independent of the metal.
(2) Interface gap (distance) is large, > 1nm.

Metal Induced Gap States (MIGS)

Louie 1977

Brooklyn Gollege

Interface Gap States: Fixed Separation Model

$$\Phi_{B,n}^{o} = \gamma_{GS}(\phi_{M} - \chi_{S}) + (1 - \gamma_{GS})(E_{g} - \phi_{CNL})$$
$$\gamma_{GS} = \left(1 + \frac{e^{2}\delta_{gap}D_{GS}}{\varepsilon_{gap}}\right)^{-1} \iff S_{\Phi}$$

Conditions for systematic analysis:
(1) Interface states are independent of the metal.
(2) Interface gap (distance) is large, > 1nm.

Simple Picture of Bond Polarization

Brooklyn Gollege

THE CITY UNIVERSITY OF NEW YORK

TRANSPORT

Electrochemical Potential Equalization Method

total energy of a multi-atomic molecule

$$E_{tot}(Q_A, Q_B, \dots, Q_N) = \sum_{i=A}^{N} (E_i^o + U_i Q_i + Y_i Q_i^2 / 2 + \dots) + \sum_{i \neq j} \frac{Q_i Q_j J_{ij}}{2}$$

 $U_A = \frac{\chi_A + I_A}{2}$

Brooklyn Gollege

- χ : electron affinity
 - *I* : ionization potential
- $Y_A = I_A \chi_A$ Q_A : net charge on atom A

minimize the energy, subject to

$$\sum_{i=A}^N Q_i = 0$$

$$\mu_A = \frac{\partial E_{tot}}{\partial Q_A}$$
 electrochemical $\mu_A =$

$$\mu_A = \mu_B = \dots = \mu_N$$

to get
$$Q_A, Q_B, \dots, Q_N$$

STERNA STR.

Brooklyn Gollege

Treating A Metal-Semiconductor Interface As A Gigantic Molecule

Assume bond density, N_B

Assume charge transfer only for these bonds

Assume bond polarization is interface dipole

Metal-Semiconductor Interface Bonds

First, break bonds!

THE CITY UNIVERSITY OF NEW YORK

TENS STREET

Bond Polarization At MS Interfaces

THE CITY UNIVERSITY OF NEW YORK

$$\Phi_{B,n}^{o} = \gamma_B(\phi_M - \chi_S) + (1 - \gamma_B)(E_g - E_B)$$

$$\gamma_B = 1 - \frac{e^2 N_B d_{MS}}{\varepsilon_{it} (E_g + \kappa)}$$

Interface gap states model :

$$\Phi_{B,n}^{o} = \gamma_{GS}(\phi_{M} - \chi_{S}) + (1 - \gamma_{GS})(E_{g} - \phi_{CNL})$$
$$\gamma_{GS} = \left(1 + \frac{e^{2}\delta_{gap}D_{GS}}{\varepsilon_{gap}}\right)^{-1}$$

Brooklyn Gollege

Bond Polarization Theory Of SBH

Tung 2000

"Band"-Alignment At Organic Interfaces

Brooklyn Gollege

THE CITY UNIVERSITY OF NEW YORK

1. 李林 二日

Interface Dipole At Organic Interface

THE CITY UNIVERSITY OF NEW YORK

17 10. 414 AL

The FBTFB Picture of Interface Dipole Formation

Brooklyn Gollege

THE CITY UNIVERSITY OF NEW YORK

THE PARTY AND

The FBTFB Picture of Interface Dipole Formation

Brooklyn Gollege

THE CITY UNIVERSITY OF NEW YORK

First-Break-Then-Form-Bond (FBTFB) Picture of Interface Dipole Formation

CAVEATS

Brooklyn Gollege

Change in work function associated with bond breaking has been neglected. Polarization of molecule has been neglected. Different bonding configurations for different interfaces (different metals). More than one bonding configurations possible at one interface.