

Shih-Lin Chang

張石麟

Department of Physics National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

Research Team

S.-L. Chang^{1, 2}, Yu. P. Stetsko^{1,2}, M.-T. Tang湯茂 竹², Y.-R. Lee李彦儒¹, W.-S. Sun孫文賢¹, M.Yabashi³, T. Ishikawa^{3, 4}H.-H. Wu吳雪鴻¹, T.-T. Kuo郭姿廷¹, Y.-Y. Chang張櫻議¹, C.-H. Chu朱家宏¹, S.-Y. Chen陳松裕¹, S.-C. Weng翁世 璋¹, C.-L. Chen陳建良¹

¹Department of Physics, National Tsing Hua University (NTHU), Hsinchu, Taiwan, R.O.C. 300

²National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan, R.O.C. 300

³Spring-8/JASRI, Mikazuki, Hyogo 679-5198, Japan ⁴Spring-8/RIKEN, Mikazuki, Hyogo 679-5148, Japan

Optical Fabry-Parot Interferometer

Optical Fabry-Parot Interferometer

Transmitted radiation of a Fabry-Perot etalon

Transmitted radiation of a Fabry-Perot etalon as a function of the phase retardation of the beams for various reflectivities.

 $\delta = 2 \pi (2 \operatorname{R} \operatorname{d} \cos \theta) / \lambda$

Reflected radiation of a Fabry-Parot etalon as a function of the phase retardation of the beams.

Transmission of an etalon combined with a Lorentzian filter.

 δ t is a pulse of lenght ; and t_r is response time. Response of an etalon to a pulse of length δ t greater than t_r.

Literature (for X-rays)

 Bond, W. L., Duguay, M. A. & Rentzepis, P. M. "Proposed resonator for an X-ray laser". *Appl. Phys. Lett.* **10**, 216-218 (1967).

2. Deslattes, R. D.

"X-ray monochromators and resonators from single crystals". *Appl. Phys. Lett.* **12**, 133-135 (1968).

3. Liss, K. D., Hock, R., Gomm, M., Waibel, B., Magert, A., Krisch, M. & Tucoulou, R.

"Storage of X-ray Photons in a crystal resonator". *Nature* **404**, 371-373 (2000).

4. Shvyd'ko, Yu. V., Lerche, M., Wille, H.-C., Gerdau, E., Lucht, M. & Rutter, H.D.

"X-ray interferometer with microelectronvolt resolution".

Phys. Rev. Lett. **90**, 013904(1)-013904(4) (2003).

Gamma-Ray Lasers (proposals)

• Baldwin, G.C. & Solem, J.C.

"Approaches to the Development of Gamma-Ray Lasers"

Rev. Mod. Phys. <u>53</u>, 687 (1981) Photon channeling in crystals

Standing-wave fields in crystals

2. Baldwin, G.C. & Solem, J.C.

"Recoiless Gamma-Ray Lasers" Rev. Mod. Phys. <u>69</u>, 1085 (1997) Crystals as resonators

Literature (for X-rays)

- Bond, W. L., Duguay, M. A. & Rentzepis, P. M. "Proposed resonator for an X-ray laser". *Appl. Phys. Lett.* **10**, 216-218 (1967).
- 2. Deslattes, R. D.

"X-ray monochromators and resonators from single crystals". *Appl. Phys. Lett.* **12**, 133-135 (1968).

3. Liss, K. D., Hock, R., Gomm, M., Waibel, B., Magert, A., Krisch, M. & Tucoulou, R.

"Storage of X-ray Photons in a crystal resonator".

Nature 404, 371-373 (2000).

4. Shvyd'ko, Yu. V., Lerche, M., Wille, H.-C., Gerdau, E., Lucht, M. & Rutter, H.D.

"X-ray interferometer with microelectronvolt resolution".

Phys. Rev. Lett. **90**, 013904(1)-013904(4) (2003).

Proposed X-ray Cavity Geometry

Deslattes, *Appl. Phys. Lett.* **12**, 133 (1968)

X-ray Fabry-Perot resonator

X-ray Fabry-Perot resonator

Cavity resonance occurs when an incident Xray is reflected back and forth coherently , both spatially and temporally , between the two plates , thus generating interference frings .

X-ray back diffraction (Bragg angle=90 deg.)

Theoretical calculation

Reflectivity of an Xray Fabry-Perot interferometer with the same parameters as the transmissivity

Resonance fringes appearing inside the energy gap in energy scan (the total reflection range in angle scan)

Pendellosung for thin crystal plates

Defect states (photonic crystals)

Theoretical calculation

Transmissivity of an X-ray Fabry-Perot interferometer as function of the X-ray energy E with respect to the Bragg energy $E_B = 14.4125$ keV.

Normal incidence is assumed to the reflecting planes (1,3,-4,28) of sapphire(Al₂O₃)

crystal plates of thickness $d_1=d_2=100 \ \mu \text{ m}$ separated by a gap of thickness $d_g=0(\text{top}), 0.5 \text{mm}(\text{middle})$ and 1mm(bottom).

The relative shift of crystal lattices in the mirrors is s = 0(left) and s = 0.5(right)

X-ray Cavity Research in Phys. Dept. NTHU

- 1984 Seminar on "Feasibility of X-ray lasers"
- 1997 First two crystals prepared
- 1999~2003 Experiments at beamline 19XU,

Spring-8 (3 more crystals prepared)

2004 Experiments at beamline 12XU, NSRRC

beamline at Spring-8 (4 more crystals

prepared)

Resolution of two spectral components

Criteria for observing cavity resonance fringes

a. $\Delta E < E_d$ (ΔE = the energy resolution of the incident X-ray beam ; $E_d = hc/2d$) b. $\Delta E < \Gamma$

C. $\Gamma < E_d$

d. $\Delta t > t_f / 2\pi$ ($\Delta t = \hbar / \Delta E$, the coherent time of the incident beam ; $t_f = h / E_d = 2d / c$)

e.
$$\ell_L = \langle \lambda^2 / \Delta \lambda \rangle = \langle \lambda / (\Delta E / E) \rangle > 2d$$

4-crystal Monochromator

Eenergy resolution : $\Delta E = 0.36 \text{meV}$ $\Delta E/E = 2.5 * 10^{-8}$ at 14.4388 keV (0.8588 A)

1 step=0.005 arcsec.

=58.548 ueV

O Cavity size :

 $t=25 \text{ um} \sim 100 \text{ um}, d_g=40 \sim 150 \text{ um}, d=t+dg=65 \text{ um} \sim 250 \text{ um}$

 $\Delta E(=0.36 \text{ meV}) < E_d (=3.6 \text{ meV})$

 $\Delta E(=0.36 \text{ meV}) < \Gamma (= 1.60 \text{ meV})$

 Γ (=1.60 meV) < E_d (=3.6 meV)

 $\Delta t \ (=1.8 \text{ ps}) > t_f / 2 \pi \ (=0.1 \text{ ps})$

 l_L (=1717 um) > 2d (=340 um)

Criterion (a) is satisfied.Criterion (b) is satisfied.Criterion (c) is satisfied.Criterion (d) is satisfied.Criterion (e) is satisfied.

Crystal Cavities (Si)

Ion-beam dry etching

Lithography

Top-view & side-view

Experimental set-up

Spring-8 (Super Photon ring-8 GeV) Japan

8 GeV; $\gamma = 15,700$; 1.44 km circumference

A Huber 8-circle diffractometer

1 step=0.0005 deg.

 $\Delta T = 0.1^{\circ} C$

At 14.4388 keV, a 24-beam diffraction takes place

9 coplanar diffractions C1 – C9

C1: (040), (4-40), (480), (8-40), (880), (12 0 0) C2: (6-4-2), (682) C3: (022), (12 2 -2) C4: (60-6), (646) C5: (426), (82-6) C6: (42-6), (826) C7: (606), (646) C8: (02-2), (12 2 2) C9: (6-42), (68-2)

(000) and (12 4 0) reflections (back diffraction)

At 14.4388 keV, a 24-beam diffraction takes place

No.	(hkl)	$\widetilde{\theta}_{B}$ (°)	$\phi_{\rm ref}(^{\rm o})$	No.	(hkl)	$\widetilde{\theta}_{B}$ (°)	$\phi_{\rm ref}~(^{\rm o})$
1	(8 2 6)	53.729	6.017	12	(4 2 6)	36.271	186.017
2	(6 0 6)	42.130	17.548	13	(6 4 6)	47.870	197.548
3	(12 2 2)	77.079	43.492	14	(0 2 2)	12.921	223.492
4	(6 4 2)	36.271	68.432	15	(682)	53.729	248.432
5	(12 0 0)	71.565	90.000	16	(0 4 0)	18.435	270.000
6	(4 4 0)	26.565	90.000	17	(8 8 0)	63.435	270.000
7	(8 4 0)	45.000	90.000	18	(4 8 0)	45.000	270.000
8	(6 4 2)	36.271	111.568	19	(682)	53.729	291.568
9	(12 2 2)	77.079	136.508	20	(0 2 2)	12.921	316.508
10	$(6\ 0\ \overline{6})$	42.130	162.452	21	(6 4 6)	47.870	342.452
11	(8 2 6)	53.729	173.983	22	(4 2 6)	36.271	353.983

The comparison of $\Delta \theta$ -scans

 $\triangle \theta$ - scans at $\triangle E = 9$ meV The $\triangle \theta$ -scan at 0.002 deg./step

(a) Forward-transmitted
(0 0 0) beam
(b) Back-reflected
(12 4 0) beam

The energy ΔE scan (1 step=58.548 μ eV)

The spectral width $\Gamma = 1.60 \text{ meV}$ of fringes.

Finesse, $F=E_d/\Gamma = 2.3$ (designed value F= 4.0 with R= 50% T=50%)

Absorption

The $\Delta \theta$ -scans show obvious oscillations, even not at the exact energy.

Double_thinner plate

8-plate

The $\Delta \phi$ -scans show obvious oscillations, even not at the exact energy.

Double_thinner plate

8-plate

Shvyd'ko et al (PRL 2003):

 $\Delta E(=2 \text{ meV}) > E_d (=12.4 \text{ ueV}) \quad \text{Criterion (a) is not satisfied.}$ $\Delta E(=2 \text{ meV}) > \Gamma (= 0.64 \text{ ueV}) \quad \text{Criterion (b) is not satisfied.}$ $\Gamma (=0.64 \text{ ueV}) < E_d (=12.4 \text{ ueV}) \quad \text{Criterion (c) is satisfied.}$ $\Delta t (=0.33 \text{ ps}) < t_f/2 \pi (=53 \text{ ps}) \quad \text{Criterion (d) is not satisfied.}$ $l_L (=310 \text{ um}) < 2d (=100000 \text{ um}) \quad \text{Criterion (e) is not satisfied.}$

Pendellosung fringes due to diffraction from thin crystals (60 um).

K.-D. Liss et al. (Nature 2001)

 $\Delta E(=3.7 \text{ meV}) > E_d$ (=4.12 ueV) Criterion (a) is not satisfied.

 $\Delta E(=3.7 \text{ meV})$? Γ (no information about Γ , but should be smaller than $E_d = 4.12$ ueV for observable fringes). Criterion (b) is not likely to be satisfied.

 Γ ? E_d (No information about Γ).

t (=0.18 ps) < $t_f/2$ (=159 ps) Criterion (d) is not satisfied. l_L (=170 um)< 2d (=300000 um) Criterion (e) is not satisfied.

Conclusion

(1) Resonance of X-rays always takes place in a normal incident X-ray diffraction from two parallel crystal plates in a monolithic crystal. Although the resonance fringes are always there, it is, however, very difficult to be observed.

For a normal incidence X-ray cavity, the required conditions for observing fringes:

Spatial coherence: photon emittances (1 deg.)

Temporal coherence: $\Delta t > t_f / 2\pi$

$$\ell_L \geq 2d$$

Conclusion

(2) The current experiments extend the spectral range of Fabry-Perot resonators (interferometers) from the visible spectra to hard X-ray and near-gamma ray regime

Conclusion (Applications):

1. Since the fixed phase relation between the forward transmitted and the back-reflected beams and the narrow energy and angular widths of X-rays from the cavity, this crystal cavity can be used for phase-contrast and high-resolution X-ray optics, such as high-resolution monochromator using the back reflection and narrow-band filter with the transmission.

2. Application for high-resolution X-ray scattering, spectroscopy, and phase-contrast microscopy in many physical, chemical, and biological studies, such as investigation of dynamics of solids, liquids, and bio-molecules, precise measurements of wavelength and lattice constant, etc.

3. Crystal cavities of the present type with better finesse might be useful for the development toward hard X-ray (or gamma-ray) lasers, if suitable lasing materials could be developed.

4. Seeding for Free electron lasers

Acknowledgements

B.-Y. Shew of the NSRRC and Y.-H. Lin of the Precision Instrumentation Development Center for the preparation of the crystal resonators

K. Tamasaku and D. Miwa of Spring-8/RIKEN and Y.-Q. Cai, C.-C. Chen of NSRRC for technical supports

J.-T. Shy of NTHU for discussion

the Ministry of Education and National Science Council for financial supports.

Thank you for your attention !!