Catalytic Chemical Vapor Deposition of Carbon Nanotubes for Field Emission and Field Effect Transistor Applications

蔡春鴻 教授 Prof. C. H. Tsai *chtsai@ess.nthu.edu.tw 國立清華大學 工程與系統科學系 奈米碳管實驗室 http://www.ess.nthu.edu.tw/~cnt/index.htm

May 10, 2006 Dept. of Physics, NTHU

First Discovery of Carbon Nanotubes by Prof. Sumio Iijima

Multi-wall carbon nanotubes (MWNTs) were first directly imaged by HRTEM by S. Iijima, NEC 1991

Sumio Iijima

First Discovery of C₆₀ Fullerene

 C_{60} "fullerene" was first detected by Laser Vaporization Mass Spectrometry in Harry Kroto, Robert Curl Jr. and Richard Smalley's experiment, Rice University 1985.

Robert F. Curl Jr. Sir Harold W. Kroto Richard E. Smalley

Nobel Prize in Chemistry 1996

R. Smalley, "Discovering the Fullerenes", Nobel Lecture, Dec. 7, 1996.

Carbon Nanotube Properties and Applications

Small sizes

0.4~1.8 nm

Low Densities

1.33~1.40 g/cm3

(AI:2.7 g/cm³)

Tensile Strength

(Steel: Broken at 2

Thick)

(E beam Lithography :

50 nm Wide, 2~3 nm

Elastisity

45 GPa

Gpa.)

Bending and Recovery (Metals and carbon fibers are brittle.)

Field Emission of Electrons

1~3 V / µ m (Mo tips : 50~100 V/μm. Short life-times)

Thermal Conductivities

6000 W/m · K at Room temperature (Pure diamonds: 3320 W/m · K)

Thermal Resistivities

2000°C in vacuum 750°C in Air (Cu wires in electronic circuits : 600~1000°C melting)

Carbon Nanotube-based Nano-electronics

I. Field Emission Electron Source & Devices

II. Field Effect Transistor & Devices

Fabrication Methods for Carbon Nanotubes

Arc Discharge

Laser Ablation

Chemical Vapor Deposition

Fabrication of CNT Field Emitters

Screen Printing
 Pre-fabricated CNTs
 → transferred onto substrates
 (unordered films)

in-situ Catalytic CVD Growth as-grown CNTs on substrates
 → vertically-aligned or unordered

Growth of Carbon Nanotube by Catalytic CVD

Synthesis of Carbon Nanotubes by Thermal CVD

Z.Y. Juang et al, *Diamond and Related Materials* 13 (2004) 1203. W.Y. Lee et al, *Diamond and Related Materials* 13 (2004) 1232. Z.Y. Juang et al, *Diamond and Related Materials* 13 (2004) 2140.

Synthesis of Carbon Nanotubes by Plasma-enhanced CVD

- Optical Emission Spec.
- Quadruple Mass Spec.
- Impedance Meter

R type TC

10 nm Ni /Si (100) ICP 1000 W, 17mTorr, 550 °C $C_2H_2: H_2 = 8: 24$ sccm, bias -400 V 10 min growth

C.H. Weng et al, *Appl. Phys. Lett.* 85 (2004) 4732.H.W. Wei et al. *J. Appl. Phys.* (2005) in press.C.H. Tsai et al, *Thin Solid Film* (2005) in press.

Parametric Study of Catalytic CVD

Thermal CVD

Effects of: •Type of Catalyst •Catalyst film thickness •Carbon source gas (CH₄, C₂H₄, C₂H₂) •Feed gas flow rate / ratio •Process temperature

Pressure

Objectives:

- Better understanding of growth mechanisms and growth kinetics
- Lower the growth temperature to below stress point of glass (~ 570° C)
- Vertically-aligned and good structure for better field emission
- Good adhesion to substrate and good conductance

CNT Growth by Thermal CVD

- Inner Diameter: ~7 nm
- Outer Diameter: ~20 nm
- wall thickness: ~18 layers
- Inter-layer spacing: 0.34 nm (graphite)

A large area of unifrom patterned well-vertically-aligned CNTs were grown on 10 nm Ni/Si with the optimal growth condition: $C_2H_4/NH_3/Ar = 10/20/70$ sccm 800°C, 1 atm, growth time 10 mins

(b) HR-TEM

- Base-growth Mode
- Bamboo-like Structure

20 nm

Kinetics Study of MWNT Growth

Nucleation Stage – Arrhenius plot

	Fe	Co-u Co-d		Ni-I	Ni-r
range (°C)	760-840	760-880 760-880		760-880	760-880
slope	19400.8182	18189.31307 11958.88693		6109.76886	13376.11197
q (kcal/mol)	38.4023	36.004 23.672		12.0938	26.4769
Mean q (Kcal/mol)	38.4023	29.	838	19.285	
Mean q (ev)	1.6718	1.2	299	0.8	395

Y.A. Mo et al. 6th Int. Conf. on Sci. and Appl. of Nanotubes, Jun 26-Jul 1, 2005.

FIG. 6. Electronic energy plot for CH_x species on Ni(111), quantum chemical values (\blacklozenge) and fitted values (\blacklozenge).

R. M. Watwe et al, Journal of Catalyst 189 (2000) 16-30

Activation energy = 20kcal/mol

Nucleation stage:

Process path: nuclei formed by carbon clustering from dehydrogenation of CH_x on catalyst surface.

Rate control limit: carbon species dehydrogenation rate on catalyst

Growth Stage – Arrhenius plot

Activation energy							_■-Fe-g				
		Fe-g	Co-u		Ni-I				7.38906 -		
	Temp. range (°C)	760~880	760~880	760)~800	840~8	380		h rate)	2.71828 -	
	Q(ev)	1.66108	1.57127	1.0	0991	2.744	41		In (growt	0.36788 -	
			Q (eV	り	D(cm ² 90	/sec) in 0°C	D(cr	m ² /sec) 200°C	in	0.04979 - 0.01832 -	
	Ni,	Bulk	1.276	ev	1.12	*10 ⁻⁷	1.	44*10 ⁻⁶	5		1/T
	polycrys Sur	talline Ni, face	0.3e	V	1.65	*10 ⁻⁶	3.	0 7 *10 ⁻⁶	5		
	Ni(111)	, Surface	0.5~0.4	lev	1.79	*10 ⁻⁷	6.	19*10 -7	7)	Steady Growth:
	Ni(100)	, Surface	2.1e	V						F	Process path: Carbon diffuses
	Ni(110)	, Surface	0.4e	V						C	diffusion, until bond with dangling
	Fe,	Bulk	1.3~1.5	8ev	1*	10 ⁻⁷	1.	~2*10 ⁻⁶	; ;	k	oond of MWNT graphite layer.
Fe, Surface		0.1 e	V	1.1*	*10 ⁻³	1	.5*10 ⁻³		F	Rate control limit:	
	Co,	Bulk	1.54e	V						C	carbon bulk diffusion

Deactivation Stage – Arrhenius plot

catalyst	Ĩ	່ຍ '	Ni		
range	760-800	840-880	760-800	840-880	
q(KJ/mol)	-143.76856	400.463322	-77.9052	350.62566	
q (Kcal/mol)	-34.23061	95.34841	-18.54886	83,4823	
ર્વા(૭૪)	-1.49	4.1508	-0.80748	3.63419	

1. In 880~840°C, the slope is positive, so the carbon which cover the catalyst particle is formed by cracking in gas.

- 2. In 800~760°C, the slope is negative, so the carbon which cover the catalyst particle is formed by dehydrogenation on catalyst surface.
- 3. In 880~840°C, the slope is much bigger than the slope in 800~760°C, maybe because the activation energy of formation carbon in gas is large.
- 4. The ratio of q on Fe to Ni is 1.85 which almost is equal to the ratio of H_2 chemisorption heat on Fe to Ni.

Deactivation stage:

Process path:

1. In 880~840°C, active sites covered by carbon formed by cracking in gas adsorbing on catalyst surface.

2. In 800~760°C, active sites covered by the carbon formed by dehydrogenation on catalyst surface.

Rate control limit: 1. In 880~840°C, the carbon source species cracking rate. 2. In 800~760°C, the carbon source

species dehydrogenation rate on catalyst.

Thermal CVD Growth on Glass Substrate

- Synthesis temperature lower than stress point of ~570°C is required.
- **Process Modification:**

- A conducting metal layer on glass is required.
- Cr was chosen for low resistivity and Ni can form nanoparticle on Cr.
- (1) Two temperature zone approach: not successful.
- (2) Single temperature:
 - -- lower temperature: low catalysis efficiency $\rightarrow C_2H_2$ was chosen; low diffusion rate $\rightarrow low C_2H_2$ flow rate and high NH₃/C₂H₂ ratio
 - -- A new pumping system was installed to lower the pressure.

Optimal process condition on 10 nm Ni/100 nm Cr/glass: $C_2H_2/NH_3/Ar = 10/50/430$ sccm 550°C, 8 torr, growth time 10 mins

J.H. Lee et al, *Surface and Coating Tech* (2005) in press.

Field Emission: Turn-on: 3~4 V/µm Threshold @10 mA/cm⁻²: ~ 7 V/µm **TECO Nano.** Condition: pressure $\sim 2 \times 10^{-5}$ torr gap $\sim 70 \ \mu m$ voltage $\sim 1.1 \ kV$ (DC) peak current $\sim 0.08 \ mA$

Controlled Growth of Vertically-aligned Multi-walled Carbon Nanotubes and *in-situ* **Pre- / Post- Treatments for Field Emission Enhancement**

Inductively-Coupled Plasma CVD

High Density Plasma RF 13.56 MHz 2500W max. Pressure $10 \sim 100$ mTorr Gas: Ar, H₂, C₂H₂, NH₃, N₂ DC/RF bias: max. 600 V / 600 W Sub. Temp. (PBN/PG): < 1000 °C Sub. size 150 mm

Equipment Novelty:

- Developed through Industrial-Cooperative Project with a domestic company, Nano Architect Research Co., in Science Park
- High Plasma Density (~10¹² cm⁻³), Low Pressure (~mTorr), Low Temperature (400~550 °C)
- Independent control of Ion Density and Energy (through ICP power and Substrate DC / RF bias)
- Automatic Process Control through *in-situ* Diagnostic (Langmuir Probe, Optical Emission, Quadruple MS, Impedance Meter)
- 2 Patents on Equipment Design, 2 Patents on Process Control and 12 journal/conference papers

CNT Growth by ICP- CVD

- Inner Diameter: ~10 nm
- Outer Diameter: ~80 nm
- wall thickness: ~100 layers
- Inter-layer spacing: ~0.4 nm
- Tip-growth Mode
- Cone-shaped catalyst at tip
- Hollow Tube Structure

ICP-CVD Growth on Glass Substrate

- Optimal substrate temperature is already lower than glass stress point.
- Cr was also chosen for conducting metal layer.

500 n

• Different Ni thickness was tested (Ni = 20, 30, 40 nm).

1 μm

40nmNi/ 60nmCr/ glass

30nmNi/ 60nmCr/ glass

20nmNi/ 60nmCr/ glass

C.H.Tung et al. Thin Solid Film (2005) in press.

Carbon Nanotube Growth Mechanisms

Base Growth

Tip Growth

ICP-CVD

SEM

SEM

TEM bamboo-like structure

carbon film cap on top and carbon source at bottom

etching at top and carbon source at top

TEM hollow tube structure

Thermal CVD

Field Emission of Carbon Nanotubes

Electrons quantum mechanically tunnel across the barrier Fowler, R. H. and Nordheim, L. W., *Proc. R. Soc. London A* **119**, 173 (1928).

W.A.de Heer, A. Chatelain, and D. Ugarte, *Science* 270, 1179 (1995).

$$I = a \frac{V^{2}}{\phi} exp(-b \phi^{\frac{3}{2}} \beta V)$$

$$l_{n}(J/E^{2}) \approx a' - \frac{b' \phi}{\beta E}^{\frac{3}{2}}$$

$$\phi : work \quad function$$

 β : field enhancemen t factor

Work Function for Electron Emission from CNTs

Type of CNT	Diameter (nm)	Measurement Method	Work Function (eV)	Reference
SWNT	1.0~1.4	Energy Spectrum of Photoelectrons	4.65 ± 0.1	Liu X et al., AIP conf. Proc. Vol. 544, 288 (2000)
SWNT	1.4	Energy Spectrum of Photoelectrons	4.8	Suzuki S et al., APL 76, 4007 (2000)
SWNT	1.4	Fowler-Nordheim and measured I-V	5.1	Bonard J-M et al., APL 73, 918 (1998)
SWNT		Fowler-Nordheim and measured I-V (field emission microscopy)	4.76~4.88	Sun JP et al., Appl. Phys. A 75, 479 (2002)
SWNT (armchair)	0.8~8.15	First principle calculation	6.75~7.05	Zhou G et al., APL 79, 836 (2001)
MWNT	14~55 (single)	Fowler-Nordheim and measured I-V (in-situ TEM)	4.6~4.8 (some~5.6)	Gao R et al., APL 78, 1757 (2001)
MWNT	44	Fowler-Nordheim and measured I-V	7.3 ± 0.7	Fransen MJ et al., Appl. Surf. Sci. 146, 312 (1999)
MWNT		Energy Spectrum of Photoelectrons	5.7	Chen P et al., PRL 82, 2548 (1999)
MWNT		Energy Spectrum of Photoelectrons	4.3	Ago H et al., Phys. Chem. B 103, 8116 (1999)
MWNT	10	Energy Spectrum of Photoelectrons	4.95	Shiraishi M. et al., AIP Conf. Proc. Vol. 544, 359 (2000)

Field Enhancement Factor

- Electron emission is driven by the local electrical field strength
- The electrical field strength in the vicinity of a nanotube is hundreds times higher than the volumetrically averaged value V/d

- Main features affecting the field emission characteristics:
 - * Microstructure / Physical property: - SWNT or MWNT
 - -electrical conductivity
 - -good graphitic structure
 - *Geometrical features:
 - -aligned or non-aligned
 - -closed or open-ended
 - -tip curvature
 - -diameter and length (aspect ratio)
 - -density

CNT Field Emission of Different Densities

L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard and K. Kern, *Appl. Phys. Lett.* **76**, 2071 (2000).

Control of Nanocatalyst Size / Density by Ar Sputtering

With Ar plasma sputtering under –400 V bias for 10 min, the catalyst particle density was obviously reduced.

CNT density was drastically reduced for those pretreated under -400 V bias consistent with the change of particle density, and good vertical alignment was kept even at low density ($\sim 10^8$ cm⁻²).

C.T. Lin et al, 9th International Conference on New Diamond Science and Technology (ICNDST-9) Mar. 26-29, 2004, Tokyo, Japan.

Effects of Ar Sputtering on CNT Density and Field Emission

Ar plasma sputtering, ICP power 1000 W Ar flow rate 10 sccm, pressure 40 mTorr

Bias -300 V

0

5

10

E (V/µm)

15

20

25

C.T. Lin et al, 9th International Conference on New Diamond Science and Technology (ICNDST-9) Mar. 26-29, 2004, Tokyo, Japan.

Field Emission from a Single MWNT (simulation)

Applied voltage 40V, cathode-to-anode distance 2µm MWNT height 100nm, radius 10nm, work function 1eV

Open-ended Effect of Edge Sharpness

Colsed-caped Effect of Tip Sharpness

Y. Hu et al. (2002)

1.5

Process Modification for Field Enhancement

- Plasma Post-treatment

Plasma Post-treatment of ICP-CVD grown CNTs

Ar plasma sputtering, ICP power 1000 W RF bias power 300 W, pressure 20 mTorr

Encapsulated Ni nanoparticles at CNTs tips were gradually removed after 5 min treatment with Ar plasma and the tips became cone-shaped.

C.H. Weng et al. Appl. Phys. Lett. 85, 4732 (2004).

Field Emission Characteristics of CNTs after Plasma Post-treatment

C.H. Weng et al. Appl. Phys. Lett. 85, 4732 (2004).

Best field emission property at 5 min post-treatment

Controlled Growth of Single Free-standing MWNT

Catalyst Definition by E-Beam Lithography

Exposure time 8 ms

After development

10.0M/ V100.000

After lift-off

Dot distance 1µm

CNTs growth with different substrates by ICP-CVD

Owelltime	length	diameter
5 ms	453 nm	31.1 nm
6 ms	552 nm	34.4 nm
7 ms	709 nm	33.3 nm
8 ms	788 nm	37.5 nm
9 ms	837 nm	41.7 nm
10 ms	800 nm	44.8 nm

Probe current 6
Field emission characterization of single CNT

Carbon nano tip ssembler inertial walker for x- and y-axis. inchworm unit for z-axis.

Schematic of a probe-type anode diode structure for field emission measurement (title angle of the specimen is ~85°, and the angle between probe and CNT tip is 135°)

Relation between local peak field strength and anode probe size

Code : SIMION 7.0 Length of CNT : 800 nm Diameter of CNT : 50 nm Anode voltage : 12 V

The image of CNT(cathode) and probe (anode)

As the diameter of anode probe is higher than 1 μ m, the local peak field strength is equal to a planar anode.

Field emission characteristics of single CNT

I-V emission characteristic of single VACNT as a function of the spacing between CNT and Pt/Ir probe

- Results of Field emission measurement on single CNTs revealed Fowler-Nordheim characteristics.
- The field enhancement factor increases with the anode-CNT spacing.

Field emission characteristics of single CNT

)well imes (ms)	radius (nm)	CNT length (nm)	aspect ratio	experimental values (β)	calculated [*] values (β)
6	18.3	552	30.16	78.71	28.04
7	18.35	709	38.76	88.66	35.32
8	18.9	788	41.69	107.89	38.12
9	19.2	837	43.59	110.99	40.34

*Theoretical calculation:

$$\beta = 1.2 \left[2.5 + \frac{h}{r} \right]^{0.9} \left[1 + 0.013 \left(\frac{d-h}{d} \right) \right]^{-1} - 0.033 \left(\frac{d-h}{d} \right)$$

J. M. Bonard, etc. *Phy.Rev.Lett.* 89, 197602 (2002).

- The field enhancement factors of CNTs increased with the tube aspect ratio.
- However, the experimental values were 2~3 times higher than the theoretical alculations based on literature, which needs further investigation.

Triode structure device with single CNT

Process for fabricating CNT microcathode gated structure: (a) Deposition of SiO2 insulator and poly-Si electrode, followed by optical lithography and etching, (b) Resist (PMMA) coating and E-beam lithography, (c) Sputter deposition of Ni catalyst, and (d) Lift off and CNT growth by ICP-CVD.

Schematics of the field emission measurement system used to examine a single gated device.

Gated CNT structure with a 800 nm height and 54 nm diameter nanotube (gate hole size = 1.5 μ m)

SEM images of spacing between CNT and gate electrode. The spacing is about 10 μ m.

S.C. Tseng et al. *Diamond and Related Materials*, 14 (2005) 2064.

The relation between the gate electrode-to-probe spacing and field emission characteristics

I-V emission characteristics with different spacing between anode-to-gate.

The gate size is 1.5 μ m; height of CNT is 530 nm. The inset shows the data plotted in Fowler-Nordheim form.

To simulate the relation between spacing (gate electrode-to-probe) and local filed strength at the apex of CNT. Simulation conditions: Aperture size : 1.5 μ m ; The height of the CNT : ~530 nm The voltage of the gate : -10 V ; The voltage of the probe : 0 V

The relation between spacing (gate electrode-toprobe) and local field strength at the apex of CNT (Simulation by Simion 7.0)

Field emission characteristics with different control scheme

(a) constant gate voltage (-10 V) and scanning cathode voltage (0~ -70 V).
(b) scanning gate voltage (-45 V~45 V) and constant cathode voltage (-50 V).
(c) scanning gate voltage (-50 V~50 V) and constant cathode voltage (-60 V).
(d) combine (a)~(c) into one figure.

Aperture size : 2.0 μ m The height of the CNT : ~800 nm

Field emission characteristics with various gate hole size

Nordheim form.

S.C. Tseng et al. Diamond and Related

Materials, 14 (2005) 2064.

Calculated tip peak field strength (field enhancement) with various gate hole size.

(Simulation by Simion 7.0)

Field emission characteristics with various CNT height

I-V emission characteristics from gate electrode device (gate hole size 1.5 μ m) with different height of single vertically aligned CNT. The inset shows the data plotted in Fowler-Nordheim form.

S.C. Tseng et al. submitted to Nanotechnology.

Calculated tip peak field strength (field enhancement) with various CNT height.

(Simulation by Simion 7.0)

Double-gated Triode Field Emitter Design & Simulation

Extraction gate hole radius: 0.5 μ m Focusing gate hole radius: 1.0 μ m Half-ellipsoid tip MWCNT, minor radius 10 nm, major radius 40 nm

Double gated electrode device

SEM images of double gate electrode device before CNT growth. The aperture size is 1.0 μ m.

Process for fabricating double gate CNT electrode device : (a) deposition of SiO2 insulator and Al electrode, (b) gate hole fabricated by optical lithography and etching, (c) Resist (PMMA) coating and Ebeam lithography, (d) deposition of Ni catalyst followed by lift off, (e) CNT growth by ICP-CVD.

SWNT-based Field Effect Transistor

R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, *Appl. Phys. Lett.* 73 (1998)

Adrian Bachtold et al, Science 294, 2001

SWNT-based FET and Inverter

High-performance p-type CNT-based FET

- Transconductance: 6000 S m⁻¹
- Hole mobility: 3000 cm² V⁻¹ S⁻¹ \longleftrightarrow Hole mobility in Si: 505 cm²V⁻¹S⁻¹

Ph. Avouris, et al., Nano Letters 0 (2001)

Challenges for Commercial Applications

- **Performance Challenges:**
- (1) Ambipolar behavior or p-n (n-p) transition due to environment
- (2) Strong dependence on the drain voltage
- (3) Electron mobility in long channel
- ~ 60 mV/dec at RT ($kT/e \ln 10$)
- SWNT diameter d_1 (bandgap ~1/ d_1) (4) Low resistance for SWNTs/metal contacts
- Contact metal (Ti, Pd, Al, etc.)
- Gate dielectric thickness & κ

- **Process Challenges:**
- (1) **Positioning** of the SWNTs on the designated locations / direction by *in-situ* catalytic CVD
- (2) Controllability of desired chirality or semiconducting properties of SWNTs
- (4) Subthreshold slope to thermal limit (3) Low temperature synthesis techniques for high purity SWNTs
 - and controllability on SWNTs/metal Schottky barrier height

R. Saito et al.

APL 60 (1992)

In-situ Growth of SWNTs by Catalytic CVD

Discrete particles by support materials

- * Supported catalyst prepared by impregnation method of metal nitrate followed by baking and mechanical grinding.
- * CVD: methane. 1000°C. min.

Summary of results of methane CVD experiments using supported metal-oxide catalysts

Catalyst composition	Support material	SWNTs?	Description of synthesized material
Fe ₂ O ₃	alumina	yes	abundant individual SWNTs; some bundles;
			occasional double-walled tubes
Fe ₂ O ₃	silica	yes	abundant SWNT bundles
CoO	alumina	yes	some SWNT bundles and individual SWNTs
CoO	silica	no	no tubular materials synthesized
NiO	alumina	no	mainly defective multi-walled structures
			with partial metal filling
NiO	silica	no	no tubular materials synthesized
NiO/CoO	alumina	no	no tubular materials synthesized
NiO/CoO	silica	yes	some SWNT bundles

Hongjie Dai et al., *Nature* **395**, 878 - 881 (1998)

Large diameter dispersion from 0.7 to 6 nm was observed.

Jing Kong, Alan M. Cassell, Hongjie Dai, Chem. Phys. Lett. 292, 567 (1998)

Carbon Nanotube MOSFETs in The Circuit

(e) growth site ≑ ground line≑ *α*

Expanded view of the circuit

Ambipolar *I-V*g characteristic, at growth site 125.

CNT device exhibiting weak dependence on back gate bias (site 7).

-5

0

back gate bias Vg (V)

5

(b)

-15 -10

3

(Aul) 1

Yu-Chih Tseng, Hongjie Dai, et al., Nano Letters 4 (2004)

Optical micrograph of part of the circuit

15

10

SEM image of a CNT bridging the gap

Statistics of electrical measurements on 2048 growth sites.

SWNTs Growth by Multilayered Metal Catalysts

Mo film ~ 2 A° **Fe film 10 A°**

Si substrate

Eight samples: (a)Fe1/Si (b)Fe1/SiO₂ (c)Mo0.2/Fe1/Si (d)Mo0.2/Fe1/SiO₂ (e)Fe1/Al10/Si (f)Fe1/Al10/SiO₂ (g)Mo0.2/Fe1/Al10/Si (h)Mo0.2/Fe1/Al10/SiO₂

Process parameter:

> Thermal CVD

900 ℃

SWNTs Growth by Multilayered Metal Catalysts

(a)Fe1/Si \ (b)Fe1/SiO₂ \ (c)Mo0.2/Fe1/Si \ (d)Mo0.2/Fe1/SiO₂ \ (e)Fe1/Al10/Si \ (f)Fe1/Al10/SiO₂ \ (g)Mo0.2/Fe1/Al10/Si \ (h)Mo0.2/Fe1/Al10/SiO₂

SWNTs growth by multilayered metal catalysts

▷ D (nm)=248/ Ω (cm⁻¹)

Summary of the process parameters

Method Sample	Standard Process	Shorter Growth time 5min	Longer Growth time 30min	Lower pressure 100 torr	Lower temperature 800°C	Dilution of hydrocarbon	SWNTs diameter range
Fe1/Si	Rare MWNTs	MWNTs	MWNTs	N/A	None	N/A	None
Mo0.2/Fe1/Si	Rare SWNTs & MWNTs	Mix. SWNTs & MWNTs	Mix. SWNTs & MWNTs	N/A	None	N/A	None
Fe1/Al10/Si	Abundant SWNTs	Rare SWNTs	Abundant SWNTs	Rare SWNTs	None	None	1.265~1.252
Mo0.2/Fe1/Al10/Si	Abundant SWNTs	Abundant SWNTs	Abundant SWNTs	Rare SWNTs	Rare SWNTs	Rare SWNTs	1.258~1.246

SWNTs growth by multilayered metal catalysts

D (nm)=248/ Ω (cm⁻¹)

Summary of the process parameters

Method Sample	Standard Process	Shorter Growth time 5min	Longer Growth time 30min	Lower pressure 100 torr	Lower temperature 800°C	Dilution of hydrocarbon	SWNTs diameter range
Fe1/SiO ₂	Rare MWNTs	MWNTs	MWNTs	N/A	Rare MWNTs	N/A	None
Mo0.2/Fe1/SiO ₂	Rare SWNTs & MWNTs	Mix. SWNTs & MWNTs	Mix. SWNTs & MWNTs	N/A	Rare MWNTs	N/A	None
Fe1/Al10/SiO ₂	Abundant SWNTs	Rare SWNTs	Abundant SWNTs	Rare SWNTs	None	None	1.265~1.252
Mo0.2/Fe1/AI10/SiO ₂	Abundant SWNTs	Abundant SWNTs	Abundant SWNTs	Rare SWNTs	Rare SWNTs	Rare SWNTs	1.265~1.246

Atomic Force Microscope (AFM) Analysis

Mo0.2/Fe1/Al10/Si

400.0 **п**м 200.0 nm 0.0 NM Digital Instruments NanoScope 10.00 µm Scan size Scan rate 0.7978 Hz Number of samples 256 Image Data Height 400.0 NM Data scale Digital Instruments NanoScope 10.00 µM Scan size 0.7978 Hz Scan rate Number of samples 256 Height Image Data 400.0 NM Data scale

Mo0.2/Fe1/Al10/SiO₂

fealox_1.002

Auger electron spectrometer (AES) analysis

- Al transformed to aluminum oxide (AlxOy) and retained oxide in the reducing environment which provided a good support material for the catalyst particles.
- Fe and Mo were oxidized by the atmosphere before the pretreatment, but the iron oxide and molybdenum oxide were reduced during the pretreatment and retained activity to catalyze the dissociation of hydrocarbon.

X-Ray Photoelectron Spectroscopy (XPS) Analysis

 $Fe2p_{3/2}=707.0eV \rightarrow Fe_2O_32p_{3/2}=710.9eV$

X-Ray photoelectron spectroscopy (XPS) analysis

(1). 2p = 74.0eV (2). 2p = 74.6 eV (3). 2p = 74.6 eV (4). 2p = 74.9eV

>Fe₂O₃,Fe2p_{3/2}=710.9eV \longrightarrow Fe2p_{3/2}=707.0eV (1). 2p_{3/2}=711.0eV (2). 2p_{3/2}=710.9eV (3). 2p_{3/2}=710.9eV (4). 2p_{3/2}=710.9eV

≻Mo3d_{5/2}=228.0eV

(1). $3d_{5/2}=228.3eV$ (2). $3d_{5/2}=228.6eV$ (3). $3d_{5/2}=228.5eV$ (4). $3d_{5/2}=228.3eV$

- To prove the aluminum oxide (AlxOy) is Al₂O₃ and to show the iron oxide and molybdenum oxide were reduced.
- There appeared reduced Fe at ~ 1 nm under surface, therefore the Fe₂O₃ observed on the sample surface after pretreatment was believed due to sample exposure to the atmosphere before the XPS analysis.

NSRRC 17B2 Beam Lline

NSRRC 17B2 Analysis

The Growth Model of SWNTs

Function of AI :

- 1. Multilayered catalysts were oxidized by the atmosphere.
- 2. AI_2O_3 was retained oxide and the Fe_2O_3 was reduced to Iron by the pretreatment.
- 3. Al₂O₃ acted the role of support material and prevented the catalyst particles to aggregate.
- 4. SWNTs grown on small catalyst particles.

Aluminum oxide acts as a good support material for the catalyst

- > the catalysts are hindered to aggregate to form large particles.
- >provide more active nucleation sites.
- >provide a porous underlayer, allowing for methane gas to flow to Fe surface.

Function of Mo:

- >Mo may help to promote the reduction of iron and retain catalytically active during the growth process.
- Mo is known to be a catalyst center for promoting the aromatization of methane, providing the intermediate aromatic species which can feed into the adjacent Fe sites with high efficiency.
- >In the methane environment, Mo may exist in the form of Mo2C and MoO3 which may probably inhibit the aggregation of iron particles. (but not observed in this study)

Different Laser Wavelengths for Raman Analysis

Sample: Mo0.2/Fe1/Al10/Si

- There appeared RBM peaks in all different laser wavelengths in Raman analyses, and all have high *ID/IG* ratio.
- The only difference is the RBM position, and the resonance position is 199 cm⁻¹, 196 cm⁻¹, 187 cm⁻¹ in the wavelength 633 nm, 442 nm, 515 nm respectively.

existing metallic and semiconducting tubes

Controlled *in-situ* Growth of Single-walled Carbon Nanotubes for Field-Effect-Transistor Application

Cross-section TEM of double layer

Field Effect free-on source/drain electrodes

Asymmetric Structure CNTFET

	Thin-oxide CNT-FET	CNT-FET with field -effect-free-on source/drain structure	Asymmetric CNT-FET
Threshold Voltage (V)	-7.1	-5.7	-9.8
Subthreshold Swing (mV/dec)	1170	543.1	429
I _{on} (nA)	11.1	476.4	149
l _{off} (nA)	0.0014	0.09458	0.02
On/Off Ratio	7929	5037	7450
Behavior	Ambipolar	Unibipolar	Unibipolar

Charaterization by suspended structure CH₄/H₂: 180/20 sccm, Temp: 850 °C, Pressure: 760 torr, Time: 20 min 1. addressed by SEM Image 2. µRaman measurement **3. AFM** measurement 10 µm trench length : 20 µm trench depth : 1 µm *trench width* : 1, 2, 3, 4 µm SiO, NTHU SEI 10.0kV X8.500 $1 \mu m$ WD 15.0mm Si-wafer Nickel the lateral growth SWNTs in thermal CVD (WY Lee)

Raman spectrum of an assemble su-SWNTs

Determine SWNT diameter by AFM analysis

nm 0

Anale

nn
nn

Determine SWNT diameter by AFM analysis

s / m both possible !

30

The second s

25

15 diameter(A)

20

1.0

0.5 -

5

10

1. 2.21 nm (o) 2.1.16 nm (o) 3.1.98 nm (B) 4. 0.96 nm (o) 5.1.15 nm 6. 0.85 nm (o) 7.1.03 nm

compared the AFM result with µ-Raman measurement ESS 632.8mp 2 3

1. (1:dt=2.209nm) ω_{G} : 1570.7 cm⁻¹ ω_{G} : 1589.4 cm⁻¹ : ℓ = 91.25 → might be metallic ! [0]

- 2. (6:dt=1.162nm) $\omega_{G_{-}}$: 1571.9 cm⁻¹ $\omega_{G_{+}}$: 1591.3 cm⁻¹ : ℓ = 26.19 → might be semiconducting ! [0]
 - (2:dt=0.854nm) $\omega_{G_{-}}$: 1571.9 cm⁻¹ $\omega_{G_{+}}$: 1591.3 cm⁻¹ : ℓ = 14.15 → might be semiconducting ! [x]

3. (4:dt=0.957nm) $\omega_{G_{-}}$: 1576.3 cm⁻¹ $\omega_{G_{+}}$: 1591.8 cm⁻¹ : ℓ = 14.20 → might be semiconducting ! [0]

in the same growth process and even in the same trench \rightarrow *existing of mixing semiconducting & metallic tubes!*
Diameter Distribution Control

Raman Shift

SWNTs Characterizations

ESS NE101 (JPK AFM)

SiO_2 substrate +Ni + SiO_2 (0.5 Å/s)

f5.001

Direct synthesis of SWNTs crossing plasma sharpened CNFs tips

Controlled *in-situ* Growth of Single-walled Carbon Nanotubes for Field-Effect-Transistor Application

Direct synthesis of suspended SWNTs using sharpened CNFs as templates

C. H. Weng et al, Appl. Phys. Lett. 85, 4732 (2004).

Controlled *in-situ* Growth of Single-walled Carbon Nanotubes for Field-Effect-Transistor Application

• Thermal CVD growth CH_4/H_2 : 180/20 sccm, Pressure: 760 Torr, Temperature: 900 °C. Growth Time: 30 min

Raman spectrum at one SWNT level

"The principles of physics do not speak against the possibility of manufacturing things atom by atom....."

"At the atomic level, we have new kinds of forces and new kinds of possibilities, new kinds of effects.
The problems of manufacturing and reproduction of materials will be quite different."

Richard Feynman "There's Plenty of Room at the Bottom" 1959, Caltech

Thanks for your attention

Acknowledgement~

Team Members:

• Field Emission Display :

NTHU (清大): C.H. Tsai, K.C. Leou, C. Pan, N.H. Tai, T.L. Lin, Y. Hu, J.H. Huang, I.N. Lin

NTNU (師大): H.F. Cheng

CYCU (中原): T.S. Lai

• Field Effect Transistors :

NTHU (清大): C.H. Tsai, K.C. Leou, K.S. ChangLiao, T.L. Lin, N.H. Tai, H.Y. Huang, K.C. Hwang, W.K. Hsu NCTU (交大): B.Y. Tsui, C.T. Kuo, H.C. Cheng NCU (中央): C.H. Nien

Funded by: National Science Council Materials Research Laboratories, ITRI Nano-Architect Research Corpoation Center for Nano Science & Technology, University System of Taiwan Center for Measurement Standard, ITRI (for micro electron gun)