（NSRRL）
 National Synchrotron Radiation Research Center

Spin，Charge，and Orbital Ordering of Transition Metal Oxides

黄迪靖
國家同步輻射研究中心
清華大學物理系（合聘）

清華大學物理系演講 Oct．5，2005

Outline:

- Verwey transition and charge-orbital ordering of $\mathcal{F e}_{3} \mathrm{O}_{4}$
- $\mathcal{M u l t}$ iferroics in $\mathcal{T b} \mathcal{M n}_{2} \mathrm{O}_{5}$
-- coexistence and strong coupling of ferroelectricity and antiferromagnetism

Pfienomena of electron-correlated materials

Physical properties of solids are primarily determined by valence electrons in a lattice.

Electronic structure of correlated materials:

- Gand width
- Coulomb interaction - charge transfer energy

Metals, from the view point of band theory

Correlated-Electron Materials: U > W

$$
d_{i}^{n} d_{j}^{n} \rightarrow d_{i}^{n-1} d_{j}^{n+1} \quad d_{j}^{n} \rightarrow d_{j}^{n+1} \underline{L}
$$

On-site Coulomb energy U

Charge-transfer energy
Δ

Imada, Fujimori \& Tokura
Rev. Mod. Phys. (1998)
Band theory is insufficient to explain the physical properties of strongly correlated-electron systems.

Orbital ordering:
periodic arrangement of specific electron orgitals

The Electromagnetic Wave Spectrum

物體大小

建築物 棒 球 昆 蟲 細胞 病 毒 蛋白質 分子 原子 原子核 質子 夸克？

10^{3}	10^{1}	10^{-1}	10^{-3}	10^{-5}	10^{-7}	10^{-9}	10^{-11}	10^{-13}	10－15

Synchrotron radiation is the electromagnetic waves emitted from charge particles when they move in a curved path.

This light has been called "synchrotron radiation", since it was accidentally discovered in an electron synchrotron in 1947.

Insertion Device

國家同步輻射研究中心

鄰近單位（9）高速電䐉中心 （11）交通大學

Research Highlights

- Electronic structure of half-metal oxides

Huang et al., PRB (2003) Chen et al., PRB (2004) Chang et al., PRB (2005)

- Orbital ordering of manganites

Huang et al., PRL (2004)

- Spin and orbital moments of magnetic oxides

Huang et al., PRB (2002)
Huang et al., PRL (2004)

- Orbital symmetry and electron correlation of cobaltates
Wu et al., PRL (2005)
- The Verwey transition
- Multiferroics in $\mathrm{TbMn}_{2} \mathrm{O}_{5}$

Verwey transition and charge-orbital ordering of $\mathcal{F e}_{3} \mathrm{O}_{4}$

The Verwey transition of magnetite $\left(\mathcal{F e}_{3} O_{4}\right)$
$>\mathcal{T}>\mathcal{T}_{\mathcal{V}} \sim 120 \mathcal{K}$
Inverted spinel structure (cubic)
1/3: tetrahedral ($\mathcal{A}-$ site $)$) $\mathfrak{F e}^{3+}$ 2/3: octahedral (B- site) $\mathcal{F e}^{3+}, \mathcal{F e}^{2+}$ $>\mathcal{A}$-site \downarrow, \mathcal{B}-site $\uparrow, \mathcal{T}_{c} \sim 860 \mathcal{K}$ PVerwey model:

charge order-disorder transition of \mathcal{B}-site $\mathcal{F e}(V)$ Verweyn of Haayman, $19411^{1)^{2}}$ -
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ is believed to be a classic example of charge ordering.

Basic concept of diffraction

$2 a \sin \theta=\lambda=\frac{2 \pi}{k}$
$2 k \sin \theta=\frac{2 \pi}{a}$
$\begin{aligned} & \text { momentum } \\ & \text { transfer }\end{aligned} \quad \boldsymbol{q}=\frac{2 \pi}{\boldsymbol{a}}$
lattice doubling \rightarrow half-order diffraction

Does $\mathcal{F e}_{3} \mathrm{O}_{4}$ exfibit charge ordering?

Neutron diffuse scattering
[S iratoriet al., g. Phys.Soc.gpr.(1998)]
The atomic displacements are not of localized
character, but spread over at le ast severalunit cells, indicating the itinerant character of the $3 d$ electrons.
\mathcal{N} MR results [Novaketal., PRB (2000)]
The states of $\mathcal{F e}$ ions on the \mathcal{B} sublattice are mixed so strongly that the notion of $2+$ and $3+$ valency may lose its meaning.

X-ray scattering [Garciactal., 悝\&(2000)]
The octafiedral $\mathcal{F e}$ atoms are electronically equivalent in a time scale lower than 10^{-16} sec.

Refinement of x-ray and neutron diffraction

Wright, Attfield, and Radaelli, PRL (2001), $\mathcal{P R B}$ (2002)

Charge ordering was deduced from the Fe-O distance.

4 independent \mathcal{B} sites of $\mathcal{F e}$ used; $\mathcal{B} 1, \mathcal{B} 2, \mathcal{B} 3, \mathcal{B} 4$
$(\mathcal{B} 1$ and $\mathcal{B} 4$ have 2.4 valence, $\mathcal{B} 2$ and B3 have 2.6 valence)
suggest:

1. ($\left.\begin{array}{lll}0 & 0 & 1\end{array}\right)_{c}$ and ($\left.001 / 2\right)_{c}$ charge modulation along the c-axis
2. Breakdown of Anderson's criterion

$\mathcal{L D A}+\mathcal{Z l}$ calculations
geng, Guo, and Huang, PRL (2004)
-gap $\sim 0.2 e \mathcal{V}$

- charge ordering of $\mathcal{B}-\mathcal{F e}$

cf: Leonovet al., PRL (2004)
$\mathcal{L D} \mathcal{A}+\mathcal{U l}$ calculations: cfarge-orbital ordering

Ieng, Guo, and Huang, PR\& (2004)

X-ray scattering

$$
\begin{aligned} & \vec{q}=\vec{k}^{\prime}-\vec{k} \quad n_{i}(r): \text { electron density } \\ & f=4 \pi \int n_{i}(r) \frac{\sin (\vec{q} \cdot \vec{r})}{|\vec{q} \cdot \vec{r}|} r^{2} d r \end{aligned}
$$
 $\mathrm{Fe}_{3} \mathrm{O}_{4}$: charge disproportionation $\Delta \mathrm{Q}=0.2 e$ $\Delta Q / Q_{\text {total }} \sim 1 / 550$

Resonant X-ray scattering

$$
\Delta f \sim \sum_{i} \frac{\langle 0| \vec{\varepsilon} \cdot \vec{r} e^{i \bar{k} \cdot \vec{r}}|i\rangle\langle i| \vec{\varepsilon} \cdot \vec{r} \cdot \vec{r} e^{i \bar{k} \cdot \vec{r}}|0\rangle}{\hbar \omega-\left(E_{i}-E_{0}-i \Gamma\right)}
$$

to extract the valence disproportionation and to learn about the spatial distribution of $|i\rangle$

Resonant X-ray scattering
Subias et al., PRL (2004)

Resonant X-ray scattering
Subias et al., PR\& (2004)

$(00 I+1 / 2)_{c}$?
$\mathcal{F e} \mathcal{K}$ - age resonant X-ray scattering failed to observe any charge ordering.

Magnetite, a Model System for Mixed-Valence Oxides, Does Not Show Charge Ordering

Gloria Subías, ${ }^{1}$ Joaquín García, ${ }^{1, *}$ Javier Blasco, ${ }^{1}$ M. Grazia Proietti, ${ }^{1}$ Hubert Renevier, ${ }^{2}$ and M. Concepción Sánchez ${ }^{1}$ ${ }^{1}$ Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pza. San Francisco s/n 50009 Zaragoza, Spain ${ }^{2}$ CEA-Département de Recherche Fondamentale sur la Matière Condensée, SP2M/Nanostructures et Rayonnement Synchrotron, 17 avenue de Martyrs 38042 Grenoble, France (Received 7 April 2004; published 7 October 2004)
We have investigated the charge ordering (CO) in magnetite below the Verwey transition. A new set of half-integer and mixed-integer superlattice reflections of the low-temperature phase have been studied by x-ray resonant scattering. None of these reflections show features characteristic of CO. We demonstrate the absence of CO along the c axis with the periodicity of either the cubic lattice $\mathbf{q}=(001)$ or the doubled cubic lattice $\mathbf{q}=(001 / 2)$. This result suggests that the Verwey transition is caused by strong electron-phonon interaction instead of an electronic ordering on the octahedral Fe atoms.

The existence of charge ordering in $\mathcal{F e}_{3} \mathrm{O}_{4}$ remains controversial.

No freezing of the soft phonon mode frs been observed. [s amuelsem, ơSteinsvoll (1974)]

Mechanism of the Verwey transition?
$\mathcal{F e} 4 p$

$\mathcal{F e} 1 s-0$
炎edge resonant x-ray scattering

Fe Ledge and O Kedge resonant soft x-ray scattering directly probes $\mathcal{F e} 3 d$ and $O 2 p$ with fight sensitivity.

DOS from $\mathcal{L D A}+\mathcal{U l}$ calculations

States between $\mathcal{E}_{\mathcal{F}}$ and 1 eVa above +2 a periodicity
$\rightarrow\left(\begin{array}{lll}0 & 0 & 1 / 2\end{array}\right)_{c}$ resonant diffraction

Iso-surface of $\mathrm{O} 2 p$ in $\mathrm{Fe}_{3} \mathrm{O}_{4}$
integrated between $\mathcal{E}_{\mathcal{F}}$ and 1 eV above

- $\mathrm{B} \mathrm{Fe}^{3+}$
- $\mathrm{B} \mathrm{Fe}^{2+}$

- O
monoclinic P2/c structure
$\mathcal{L D A}+\mathcal{U}$ calculations: $\mathcal{H} \cdot \mathcal{T}$. geng

Summary

- Tfe Verwey transition is a transition of charge-orbital ordering.
- Experimental discovery of orbital. ordering mecfianism for the Verwey transition, resolving the long-lasting debate.

Outline:

- Verwey transition and charge-orbital ordering of $\mathrm{Fe}_{3} \mathrm{O}_{4}$
- $M_{M u l t i f e r r o i c s ~ i n ~}^{T b} \mathcal{M n}_{2} \mathrm{O}_{5}$
-- coexistence and strong coupling of ferroelectricity and antiferromagnetism

The magne toelectric effect: the induction of magnetization by an electric field; induction of polarization by a magne tic field.

- first presumed to exist by Pierre Curie in 1894

$$
\begin{aligned}
& \nabla \times \vec{H}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial}{\partial t}(\vec{E}+4 \pi \overrightarrow{\mathrm{P}}) \\
& \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}
\end{aligned}
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \cdot \stackrel{\rightharpoonup}{E}=4 \pi \rho
$$

Magnetic control of ferroelectric polarization
 Nature, 426, 55 (2003)

T. Kimura ${ }^{\mathbf{1} *}$, T. Goto ${ }^{1}$, H. Shintani ${ }^{1}$, K. Ishizaka ${ }^{1}$, T. Arima ${ }^{2}$ \& Y. Tokura ${ }^{1}$

Electric polarization reversal and memory in a multiferroic material induced by magnetic fields

N. Hur, S. Park, P. A. Sharma, J. S. Ahn*, S. Guha \& S-W. Cheong
$\mathcal{T} 6 \mathrm{Mn}_{2} \mathrm{O}_{5} \quad$ Nature, 429, 392 (2004)

- 3 transitions on cooling.
- Magnetic field induces a sign reversal of the electric polarization.

Recently discovery in the coexistence and strong coupling of antiferromagne ism and ferroelectricity in frustrated spin systems such $\mathcal{R N M n O}_{3}$ and $\mathcal{R M n}_{2} \mathrm{O}_{5}$ $(\mathcal{R}=\mathcal{T} 6, \mathcal{H o}, \ldots)$

> revived interest in "multiferroic"systems

The mechanism has not been yet clarified, although magnetic competing interactions are believed to be the key ingredient.

Neutron diffraction: complex spin structure
L.C. Chapon et al, PRL 94 , 177402 (2004)

3 AFM phases with different propagation vectors in the ac plane.
$k=\left(k_{x} 0 k_{z}\right)$
propagation vectors k in units of ($2 \pi / \mathrm{la} 02 \pi / \mathrm{c}$):
33 K < T 42 K
$\mathrm{k} \sim(\mathbf{1 / 2} \mathbf{0} \mathbf{0 . 3 0}$) incommensurate
24 K < T < 33 K
$\mathrm{k}=(1 / 2,0,1 / 4)$, commensurate
T < 24 K,
$\mathrm{k} \sim(0.48,0,0.3)$, incommensurate

Summary

- Resonant soft χ-ray scattering of $\mathcal{T} \mathfrak{M} \mathfrak{M n}_{2} \mathrm{O}_{5}$ Two incommensurate orderings at $\mathcal{T}<24$: $\mathfrak{A F M}$ ordering, consistent with neutron diffractions.
A new type of ordering,
...cha rge-orbital ordering?.
- The $\mathfrak{A F M}$ ordering is closely related to the dielectric response.

Collaborators

Jun Okamoto（國家同步輻射研究中心）

趙國勝（交通大學電子物理研究所）
林宏基，黄志謀，徐嘉鴻，陳建德（國家同步輻射研究中心）
吴文斌（交通大學電子物理研究所）

LDA＋U：

鄭弘泰（中研院物理所）
郭光宇（台灣大學物理系）
Resistivity measurements（ $\mathrm{Fe}_{3} \mathrm{O}_{4}$ ）：
林大欽（淡江大學物理系）
$\mathrm{TbMn}_{2} \mathrm{O}_{5}$ ：S．W．Cheong（Rutgers Univ．）

歡迎有興趣的研究生加入我們的研究團隊！

Efxth Tawan－Korea－VapanSymposimmon Stronshicorrelated Electron Systems

主辦單位：
國家同步輻射研究中心－台大凝態科學研究中心
贊助單位：
國科曾•國家理論科學研究中心

Thank you!

