DUST-BUSTER: a high-sensitivity wide-range mass spectrometer for isotopic study of star-dust from comet Wild-2 and primitive meteorites

NTHU Physics Colloquium by Typhoon Lee, 4/20/05

Chun-Yen Chen^{1,} Jason J-S Shen¹ Wally F. Calaway² Jerry E. Moore² Mike J. Pellin^{2,} Igor V Veryovkin²

¹: Institute of Earth Sciences, Academia Sinica, TAIPEI ²: Material Science Division, Argonne National Lab. USA

Figure 4.16 D/H ratios in the solar system and interstellar molecular clouds. The uncertainties in the measurement are enclosed by vertical bar. SMOW = standard mean ocean water, ISM= interstellar medium

Plutino, Classical, scattered March, 2003, 700+ KBOs?

Sedna Size Comparison

The artist's rendition shows the newly discovered planet-like object, dubbed 'Sedna,' in relation to other bodies in the Solar System, including Earth and its Moon; Pluto; and Quaoar, a planetoid beyond Pluto that was until now the largest known object beyond Pluto.

N(S) S^{-q} S= diameter q= 3.5±0.5

STARDUST: space mission for comet sample return.

Dusts carried in the jets from comet Wild-2 were collected at a distance of 200+ km from its nucleus during the 1/2004 fly-by. The sample module will be dropped to Utah on 1/14/2006.

Fly-by results summarized in *Science*, *304*, 1764, (2004).

official web site: 'stardust. jpl. nasa. gov'

Wild-2 nucleus was small (5km) & dark (reflectivity < 5%).

How to extract dust from aerogel?

DESIGN REQUIREMENTS

I. Wide mass range up to Fe-Ni <=> temp. 10-4,000 mega-k <=> H-burning shell to Si-burning (iron core) inside stars.

II. High sensitivity => ability to measure dust from comet & ISM (1 μ ³= 1 pg = 1E10 atoms) Goal: look for large isotope effect in small grains Dust size ~ 1 μ m, ~10⁻¹² gram, ~ 10¹⁰ atoms 3σ ~ 10% effect

Cover as many as isotope ratios over large mass range in order to examine the structure of individual source star of solar system nuclides

Secondary-Neutral Mass-Spectrometry (Time-Of-Flight) (Non-Resonant Single-Photon Post-Ionization)

Using SIMION-3D software, ANL group improved its SNMS design, aiming for useful yield (=ions detected / atoms consumed) ~30% so far,

measured > 12% !

In matter sputtered or ablated off the sample surface: neutral >> ion, => SNMS >> SIMS in sensitivity. reflectron 1 95% transmission <= 157 nm (~8eV) laser ionization+ good extraction in 4x4x3 mm³

We are using SPIRIT ↗ one of the three new SNMS built by ANL to develop NR-SNMS methodology. AS is building DUST BUSTER based on ANL design. Together, we study dust and further improve the instrument.

DUST-BUSTER: Secondary-Neutral Mass-Spec Time-Of-Flight. (157 nm~8eV) Single-Photon Post-Ionization (Non-Resonant)

Alignment test of the chamber ports

Sections of ion optics

Photo-ion extraction section

Ion beam bending & detector housing section

Reflectron section (side view)

Reflectron (front view)

Ion optics mounted in vacuum chamber

Schwarzschild microscope (cousin of Cassegrain telescope)

A reflecting microscope with long working distance and high magnification for illuminating, viewing, and photo-desorbing µm samples.

2.2 µm wide bars on the air force test pattern (right photo) were resolved.

Ionization potentials of atomic elements vs. laser wavelength

Element	Isotope	lon	Sample	
			Ruby Spinel (MgAl ₂ O ₄)	
		Mg⁺	Synthetic MgO	
Mg	24, 25, 26		Rutile (TiO ₂) (N. Carolina NMNH120812)	
			Diopside (MgCaSi ₂ O ₆) (Mantle xenolith (San Carlos))	
Si	28, 29, 30	Si	Sphene (CaTiSiO₅) (Brazil NMNHR17030)	
S	32, 34	S ⁺ , S ₂ ⁺ , FeS ⁺	Troilite (FeS) (california NMNH94472-2)	
Са	40, 42	Ca+	Sphene	
	46, 47, 48, 49, 50	Tit TiOt	Sphene	
11		11 ⁻ , 110 ⁻	Rutile	
		Fe+, FeS+	Troilite	
Fe	54, 56, 57	Fe⁺, FeOH⁺	Iron meteorite (cape york)	
Ni	58, 60, 61, 62, 64	Ni+	Iron meteorite	

complo	olomont	Isotope	Deviation and	Photoion
Sample	element	ratio	reproducibility (%)	species
	S	34/32	16.4 +/- 4.8	S
			13.8 +/- 5.1	S ₂
Natural			1.0 +/- 0.7	FeS
Troilite	Fe	5 <i>1/</i> 56	1.5 +/- 0.7	Fe
(FeS)		54/50	-4.1 +/- 0.3	FeS
		57/56	12.2 +/- 2.8	Fe
			52.1 +/- 1.6	FeS
	Fe	54/56	4.2 +/- 0.5	Fe
			13.6 +/- 1.9	FeOH
		57/56	1013.8 +/- 125	Fe
Iron meteorite (FeNi alloy)			26.9 +/- 3.2	FeOH
	Ni	58/60	-1.1 +/- 0.5	
		61/60	12.1 +/- 3.4	NI
		62/60	3.6 +/- 1.7	INI
		64/60	21.7 +/- 5.8	

CHALLENGES

The dynamic range of the detector is being improved to get higher S/N simultaenously for both major and minor isotopes.

Pulsing MCP HV, gain switching multiplier

Hydride Interference is significant especially for the peaks one amu above major isotopes (such as Mg 24+H at Mg-25).

Higher resolving power, reduce H-source.

STATUS (4/2005)

Methodology development using the SPIRIT at ANL are well underway. A number of key elements (Mg, Si, S, Ca, TI, Fe, Ni, Cu, Zn, Sn, Zr, Mo, and Pb so far) are being explored in a variety of terrestrial, meteoritic, and man-made host material. We found :

High S/N isotope ratios can be measured with good precision (s<2%)

Same isotope ratios measured on different species in the same mass spectrum provide internal checks against false alarms (e.g. due to interference). Ti, TiO, Fe, FeS, FeNi.

High ionization potential elements sometimes can be analyzed as molecules. (S-FeS)

The construction of DUST BUSTER will be completed by this summer. It will go through extensive testing including the analysis using star dust samples from meteorites before comet samples returned by the STAR DUST are ready for distribution by mid-2006.

Vibration problem and solution.

Difference of measured isotopic ratio to that in solar material and the experiment reproducibility at 1σ level (the deviation are calculated only from those data which are taken under the same experimental parameters)

sample	element	lsotope ratio	Deviation and reproducibility (%)
	Si	29/28	250.8 +/- 6.8
		30/28	54.4 +/- 3.3
	Ca	42/40	54.3 +/- 3.1
	Ti	40/40	19.0 +/- 0.6
		40/40	-0.2 +/- 0.3
Titanite		47/40	7.3 +/- 0.7
(CaTiSiO ₅)		47/40	3.2 +/- 0.7
, U		40/48	42.3 +/- 0.9
		49/40	34.3 +/- 0.6
			19.0 +/- 0.2
		50/48	20.8 +/- 0.8

The ratios of Si, Ca, and Ti shown in this table are all extracted from the same mass spectra

Comet Wild-2

(discovered by Paul Wild on January 6, 1978)

Jupiter family comet. perihelion : near Mars; aphelion: near Jupiter

http://stardust.jpl.nasa.gov

Hope for :

- 1: cometary dusts collected from Wild-2 will have a safe journey return to earth.
- 2: collected dust grain is pristine, has not been mixed and homogenized, its characteristic isotopic composition from the source star is still preserved.

Science goal:

Get to know our cosmic origin:;

identify source stars of our solar system nuclides by comparing the isotopic signature of different nucleosynthetic processes with the measured isotopic compositions.

Brass sample (CuZn) in silver epoxy

sample	element	Isotope ratio	Deviation and reproducibility (%)		Photoion species	Possible interference species
	Ti	46/48	17.7 +/- 1.9	No	Ti	
			-4.0 +/- 0.8		TiO	
		47/48	29.4 +/- 2.4		Ti	⁴⁶ TiH
			16.6 +/- 0.6		TiO	⁴⁶ TiOH
		49/48	66.4 +/- 3.2	pre-clean	Ti	⁴⁸ TiH
			223.5 +/- 4.2		TiO	⁴⁸ TiOH
		50/48	102.5 +/- 6.1		Ti	⁵⁰ Cr, ⁴⁹ TiH
Rutile			24.7 +/- 0.9		TiO	⁴⁹ TiOH
(TiO ₂)		46/48	-2.7 +/- 0.9	With preclean	Ti	
			-4.0 +/- 0.5		TiO	
		47/48	3.5 +/- 3.5		Ti	⁴⁶ TiH
			0.7 +/- 0.5		TiO	⁴⁶ TiOH
		49/48	8.6 +/- 2.2		Ti	⁴⁸ TiH
			50.9 +/- 1.6		TiO	⁴⁸ TiOH
		50/48	67.3 +/- 1.9		Ti	⁵⁰ Cr, ⁴⁹ TiH
			11.7 +/- 0.5		TiO	⁴⁹ TiOH

The isotopic ratios of Mg and Ti from sample Rutile as shown in this and the next pages are all extracted from the same mass spectra

sample	element	Isotope ratio	Deviation and reproducibility (%)		Photoion species	Possible interference species
Spinel	Ma	25/24	55.0 +/- 2.4	(no pre-clean)	Mg	²⁴ MgH
(MgAl ₂ O ₄)	ivig	26/24	20.7 +/- 2.3			²⁵ MgH
Synthetic MgO	Mg	25/24	25.0 +/- 2.4	(no pre-clean)	Ma	²⁴ MgH
		26/24	7.5 +/- 0.8		IVIG	²⁵ MgH
		25/24	7.2 +/- 0.3	With preclean	Mg	²⁴ MgH
		26/24	5.8 +/- 0.7			²⁵ MgH
	Mg	25/24	40.0 +/- 3.3	(no pre-clean)	Mg	²⁴ MgH
СРХ		26/24	7.1 +/- 2.3			²⁵ MgH
(MgCaTiSi ₂ O ₆)		25/24	57.0 +/- 0.6	AAPd	Mg	²⁴ MgH
		26/24	24.8 +/- 0.5	with preclean		²⁵ MgH
	Mg	25/24	42.7 +/- 1.8	(no pre-clean)	Mg	²⁴ MgH
Rutile (TiO2)		26/24	13.3 +/- 1.8			²⁵ MgH
		25/24	8.3 +/- 1.3	With preclean	Ма	²⁴ MgH
		26/24	4.5 +/- 2.1		ivig	²⁵ MgH

sample	element	Isotope ratio	Deviation and reproducibility (%)	Photoion species	Possible interference
Brass (CuZn alloy)		65/63	-0.8 +/- 0.3	Cu	
	Cu		-5.1 +/- 0.4	^{63,65} Cu ₂ / ^{63,63} Cu ₂	
			0.01 +/- 0.3	^{65,65} Cu ₂ / ^{63,63} Cu ₂	
	7.0	66/64	-3.1 +/- 7.2	7	
	Ζn	68/64	8.6 +/- 7.9	Zn	
		90/94	-14.3 +/- 0.4	Zr	
			0.7 +/- 0.3	ZrO	
		91/94	332.4 +/- 2.3	Zr	
	Zr		53.5 +/- 0.8	ZrO	
Synthetic		92/94	63.2 +/- 0.5	Zr	
Zr metal			5.4 +/- 0.3	ZrO	
			9.8 +/- 0.3	ZrH	
		96/94	28.6 +/- 0.8	Zr	
			-2.5 +/- 1.1	ZrO	
			-7.6 +/- 0.7	ZrH	
		90/94	-9.3 +/- 2.6	Zr	
			23.5 +/- 0.5	ZrO	⁸⁹ YO
		91/94	55.8 +/- 4.8	Zr	
Synthetic ZrO	Zr		61.8 +/- 3.9	ZrO	
		92/94	5.4 +/- 2.0	Zr	
			9.2 +/- 0.5	ZrO	
		00/04	9.1 +/- 3.4	Zr	
		90/94	3.4 +/- 1.0	ZrO	

Difference of measured isotopic ratio to that in solar material and the experiment reproducibility at 1σ level (the deviation are calculated only from those data which are taken under the same experimental parameters)

sample	eleme nt	Isotop e ratio	Deviation and reproducibility (%)	Photoion species	Possible interference species
	Si	29/28	250.8 +/- 6.8	Si	²⁸ SiH
		30/28	54.4 +/- 3.3	Si	²⁹ SiH
	Ca	42/40	54.3 +/- 3.1	Ca	
	Ti	46/48	19.0 +/- 0.6	Ti	⁴⁷ TiH
			-0.2 +/- 0.3	TiO	⁴⁷ TiOH
Titanite		47/48 49/48	7.3 +/- 0.7	Ti	⁴⁶ TiH, ⁴⁷ TiH
(CaTiSiO ₅)			3.2 +/- 0.7	TiO	⁴⁶ TiOH. ⁴⁷ TiOH
ι			42.3 +/- 0.9	Ti	⁴⁸ TiH+, ⁴⁷ TiH+
			34.3 +/- 0.6	TiO	⁴⁸ TiOH, ⁴⁷ TiOH
		50/48	19.0 +/- 0.2	Ti	⁴⁹ TiH, ⁴⁷ TiH
			20.8 +/- 0.8	TiO	⁴⁹ TiOH, ⁴⁷ TiOH

The ratios of Si, Ca, and Ti shown in this table are all extracted from the same mass spectra