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Einstein-Podolsky-Rosen (EPR) Paradox 

l Particle 1 in spin ↑ or ↓ is 50% and so is particle 2.
l The two particles must have opposite spin states.
l Their spin states won’t be known until measurements.
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Information Propagation Cannot Exceed c

l After the two particles travel far away, their spin states are
measured.

l If cttL >− )( 12 , it is not possible for the two to exchange
the information of their spin states.

      ⇒ The probabilism concept of QM is wrong.
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Quantum Non-locality 
l The wavefunction 12

ψ  is everywhere.

l Particles 1 and 2 do not need to exchange any information.

l Since the two particles must have opposite spin states,
they are entangled.

⇒ An EPR or entangled pair.

Down-conversion by a BBO crystal to generate two entangled photons
along the intersecting directions of the cones.



Teleportation 

l An EPR source generates thousands of entangled pairs.

l Bob keeps one of the entangled pair and the counterpart is
sent to Alice.

l Once Alice receives all her particles, Bob starts to transmit
information based on the measurements of his particles.

public communication

EPR
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Bob Alice

secure channel



Information Encoding and Decoding 

l Data transmitted through the public communication do not
reveal real information.

l Only the random numbers are sent in the secure channel.

⇒ The information can only be known by Bob and Alice.

↑ ↓ ↓↓ ↑↑ ......... ↓ ↓ ↑ ↑↑ ↓ .........
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L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed
reduction to 17 metres per second in an ultracold atomic gas,” Nature
397, 594-598 (18 February 1999).



Measure Light Speed in a Medium
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Chromatic dispersion
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The index refraction of fused quartz. 01.0≈
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The Phenomenon of
Electromagnetically Induced Transparency (EIT)

probe laser

probe laser
coupling laser

atoms

atoms



|3〉

|2〉

|1〉

Coupling

Probe

= + + + .......

path i path ii path iii .......

Transition amplitudes: Ai Aii Aiii
.......

Transition probability of |1〉 → |2〉  =  | Ai + Aii + Aiii + ....... |2

EIT is the destructive interference between Ai , Aii , Aiii , ....... 

⇒ The probe absorption is suppressed.

Quantum Inter ference



Exper imental Setup
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T: trapping beam

l Typically, we trap 4×107 87Rb atoms in a vapor-cell MOT. All fields
of the MOT are shut off during the measurement of spectra.

l The coupling and probe fields propagate nearly in the same direction
and they are switched by AOMs.

Probe

|g1〉 |g2〉

|e〉

Coupling



Exper imental Spectrum without the Coupling Laser



Exper imental Spectrum in the Presence of the Coupling Laser



Ultrahigh Contrast near  the Resonance
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Group Velocity Predicted from the Exper imental Data
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Photon Switching by Quantum Inter ference

Probe

|1〉 |2〉

|3〉
|4〉

Coupling

Switching

l A weak probe field and a strong coupling field form the EIT configuration.

l Presence of the switching field enables the probe absorption and induces the
three-photon transition from the ground state |1〉 to the excited state |4〉.

l One switching photon is enough to cause one probe photon absorbed under
the ideal condition. (Harris and Yamamoto, PRL81, 3611)



The Three-Fold Entangled State

|1〉 |2〉

|3〉 |4〉

Coupling

Switching

Probe
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+ where 1 or 0 in the | 〉s, | 〉p, and | 〉f denotes
presence or absence of the switching, probe, and
fluorescence photons measured by the detectors.

Requirements: OD ≥ 10 and γ < 10-3Γ.



The Optical Bloch Equation 

l Treat the probe field as perturbation and solve the optical Bloch
equation to the first order.

⇒ OD = N L (3λ2/2π) Im[ρ31] (Γ/Ωp),

n = N (3λ3/8π2) Re[ρ31] (Γ/Ωp),

l TD calculated from the phase shift induced by the refractive
index, n, of the medium.

⇒ TD = 
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where N is atomic density.



Frequency Spectrum 

Ωc = 1.5 Γ
Ωs = 1.5 Γ

Thin and thick lines are the spectra of probe absorption 
without and with the switching field, respectively. 



Transient Behaviors of the Probe Absorption
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l In the low-intensity limit, the probe absorption is just an exponential function.
l At large Ωc or Ωs, the probe absorption has some oscillations other than

increases exponentially. The oscillation becomes more rapid at larger Rabi
frequencies.



Rise Time of the Probe Absorption

1/
τ   
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l The rise time can not be shorter than 2/Γ and is equal to 2Γ/(Ωc
2+Ωs

2)
in the low-intensity limit.

l In the low-intensity limit, the delay time is longer than the rise time as
long as OD(0,0)＞2(1+Ωs

2/Ωc
2).



Defects in the Cur rent Calculation

l The perturbation method may fail at Ωc ≈ 3Ωs and Ωs ≈ Ωp.

l Entire sample is considered as a single atom.

l Decay and deformation of the probe and switching pulses
during the propagation have not been taken into account.
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Pulse Propagation in a Medium

Probe propagation:

Atomic coherence:
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Slice Sample and Neglect Propagation Delay
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However, Im[ρ31]/Ω can diverge.



Treat ∂ρ/∂t Term as Per turbation
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Find the analytical solution of ρ31(Ωp(x,t)) and numerically solve
the equation of probe propagation.

Ωc = 0.1 and Ωp,max = 0.052.



Summary

l We have experimentally studied the transient behaviors of
the photon switching by quantum interference. The results
are consistent to our theoretical predictions.

l Propagation of the single-photon pulse in the system of
photon switching has not been understood quantitatively.

l The pulse propagation in the Bose condensate is a rather
interesting subject.

l We have been developing an experimental system suitable
for the observation of the photon entanglement (OD > 10
and γ < 10-3Γ).

l Our ultimate goal is to achieve the quantum teleportation.
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