Photon Switching
by Quantum Interference

— from Reduction of the Light Speed
to Quantum Teleportation
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Einstein-Podolsky-Rosen (EPR) Paradox
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o Particle 1 in spin T or { is 50% and so is particle 2.

o The two particles must have opposite spin states.
o Their spin states won’t be known until measurements.



Information Propagation Cannot Exceed ¢
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o After the two particles travel far away, their spin states are
measured.

o If L/(t,—1)>c, it is not possible for the two to exchange
the information of their spin states.

—> The probabilism concept of QM 1s wrong.



Quantum Non-locality

« The wavefunction |v),, is everywhere.
o Particles 1 and 2 do not need to exchange any information.

e Since the two particles must have opposite spin states,
they are entangled.

— An EPR or entangled pair.
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Down-conversion by a BBO crystal to generate two entangled photons
along the intersecting directions of the cones.



Teleportation public communication
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o An EPR source generates thousands of entangled pairs.

» Bob keeps one of the entangled pair and the counterpart is
sent to Alice.

o Once Alice receives all her particles, Bob starts to transmit
information based on the measurements of his particles.



Information Encoding and Decoding

RJX R R x| R oeeeeen.
.,‘
Bob Alice
EPRL: [N YUY/ T -oeeeeeee EPR2¢¢TTT¢ .........
Information: |0 1| L|O] +vvvvveeeenn. v 1/1///
O 1/ 11O} ceeevneenennnnn

o Data transmitted through the public communication do not
reveal real information.

e Only the random numbers are sent in the secure channel.

—> The information can only be known by Bob and Alice.
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Measure Light Speed in a Medium
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Transmission (Arb. Units)

delay = 1.5 us & length of atom sample = 1 mm,

==> light speed ~ 600 m/s
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Chromatic dispersion
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The Phenomenon of
Electromagnetically Induced Transparency (EIT)
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Quantum Interference
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Transition amplitudes: A A A e

Transition probability of [1) > |2) = | A+ A+ A+ |2

EIT 1s the destructive interference between A, A., A.., =
—> The probe absorption 1s suppressed.



Experimental Setup
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e Typically, we trap 4x10” *'Rb atoms in a vapor-cell MOT. All fields
of the MOT are shut off during the measurement of spectra.

e The coupling and probe fields propagate nearly in the same direction
and they are switched by AOMs.



Experimental Spectrum without the Coupling Laser
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Experimental Spectrum in the Presence of the Coupling Laser

Nearly 100% Transparency at the Resonance
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Probe Absorption (arb. units)

Ultrahigh Contrast near the Resonance

EIT Dip with 85-kHz Linewidth
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Group Velocity Predicted from the Experimental Data
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Photon Switching by Quantum Interference
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e A weak probe field and a strong coupling field form the EIT configuration.

e Presence of the switching field enables the probe absorption and induces the
three-photon transition from the ground state |1) to the excited state |4).

e One switching photon is enough to cause one probe photon absorbed under
the 1deal condition. (Harris and Yamamoto, PRL81, 3611)



The Three-Fold Entangled State

A 50/50 BS

Switching

1>p‘0>f) where 1 or 0 in the | ), | ), and | ),denotes
presence or absence of the switching, probe, and
fluorescence photons measured by the detectors.

1),

Requirements: OD > 10 and y < 10T,



The Optical Bloch Equation

dp 1 1 .1 [dp
=—|H,+H +H +|H | p|+1—
dt Ih[ 0 c S _pp] {dt}

Py, (1) = p5,(1) C_jwpt, where [/ is the slowly-varying
part of /7.

e Treat the probe field as perturbation and solve the optical Bloch
equation to the first order.

=  OD=NLG3\N/2n) Im[ps;] T/Q),
n=N (37»3/ 8752) Re[p31] (I7€Y),  where Nis atomic density.

e Tp calculated from the phase shift induced by the refractive
index, n, of the medium.
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Frequency Spectrum
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Thin and thick lines are the spectra of probe absorption
without and with the switching field, respectively.



Transient Behaviors of the Probe Absorption
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e In the low-intensity limit, the probe absorption is just an exponential function.

e At large (). or (), the probe absorption has some oscillations other than
increases exponentially. The oscillation becomes more rapid at larger Rabi
frequencies.



Rise Time of the Probe Absorption
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e The rise time can not be shorter than 2/I" and 1s equal to 2F/(QC2+QSZ)
in the low-intensity limit.

e In the low-intensity limit, the delay time 1s longer than the rise time as
long as OD(0,0)>2(1+Q/Q5).



Defects in the Current Calculation

o The perturbation method may fail at (2, = 3Q); and Q= Q..
o Entire sample 1s considered as a single atom.

o Decay and deformation of the probe and switching pulses

during the propagation have not been taken into account.
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Pulse Propagation in a Medium
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Slice Sample and Neglect Propagation Delay
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Treat 0p/0t Term as Perturbation
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Find the analytical solution of p;,(€2(x,9)) and numerically solve
the equation of probe propagation.
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Summary

o We have experimentally studied the transient behaviors of
the photon switching by quantum interference. The results
are consistent to our theoretical predictions.

o Propagation of the single-photon pulse 1n the system of
photon switching has not been understood quantitatively.

o The pulse propagation in the Bose condensate 1s a rather
interesting subject.

o We have been developing an experimental system suitable
for the observation of the photon entanglement (OD > 10

and y < 10°T).

o Our ultimate goal 1s to achieve the quantum teleportation.
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