Deformation of High Energy Symmetry in String Theory

Chuan-Tsung Chan

Department of Physics, Tunghai University

April, 02, 2011 at NCTS, NTHU Cross Strait Meeting on Particle Physics and Cosmology Based on arXiv:0907.5472 [hep-th] ,arXiv:0907.5347 [hep-th] , arXiv:0905.2322 [hep-th],JHEP 0911:081,2009.

Based on a series of collaboration with

Borhade, Pravina (Tunghai) Chen, Wei-Ming (NTU) Ho, Pei-Ming (NTU) Lee, Jen-Chi (NCTU) Teraguchi, Shunsuke (Nagoya) Yang, Yi (NTU) Yeh, Chi-Hsien (NTU)

Introduction

- 2 High Energy Symmetry of String Theory
- Background (In)dependence of String Theory
- 4 High Energy Scatterings of String States in Linear Dilaton Background

I. Introduction

	N	/ebl	Elen	nen	ts: t	he p	erio	dic	table	e on	the	wo	rld-v	vide	wel	С	
						http://	/www	web	elem	ents.c	com/						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
100294(7)			Key-														A 002002(2)
1054um 3	beryllum 4	1	at	element name comic numl	ber							boron 5	carbon 6	ntrogen 7	axygen 8	fluorine 9	10
Li	Be		S	ymb	ol							В	С	N	0	F	Ne
sodium 11	magnealum 12	1	2013 8018	- weight (construction	early many							aluminium 13	silicon 14	phosphorus 15	sultur 16	chlorine 17	argon 18
Na	Mg											Â	Si	P	S	CI	Ar
22.989770(2) potasakum	24.3050(6) calcium	scandlum	stanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	25.981538(2) gallum	28.0855(3) germanium	30.973761(2) amenic	32.055(5) selenium	35.453(2) bromine	39.948(1) krypton
19	20 Ca	21 SC	22	23	24	25 Mp	26	27 Co	28	29	30 7 D	31 Ga	32	33	34 So	35	36
39.0963(1)	40.078(4)	44,900910(8)	47.857(1)	50.9415(1)	51,9951(5)	54.938049(9)	50,649(2)	58 933200/9/	58,0934(4)	63,546(3)	65,38(2)	69.723(1)	72.64(1)	74,92160(2)	78,95(3)	79.994(1)	83,798(2)
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	43	nuthenium 44	modium 45	palladium 46	silver 47	cadmium 48	indum 49	50 50	antmony 51	tellurium 52	icdine 53	xenon 54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
65.4678(3) Ceesium	87.62(1) barium	k/setum	91.224(2) hathium	52.90638/21 tantalum	55.95(2) tungaten	rbenium	101.07(2) 08/mium	102 90550/2) Iddum	105.42(1) platinum	107 8682(2) gold	112.411(8) mercury	114,818(3) thallum	118.710/7) lead	121.760(1) bismuth	127.60(3) polonium	126.90447(3) astatine	131.293(6) raidon
Ĉs	Ba	Ľ	Ĥf	Ťa	ŵ	Re	Ôs	ľr	Pt	Âu	Η̈́α	T	Pb	Bi	Po	At	Rn
132.90545(2)	137.327(7)	174.9558(1)	178.49(2)	180.9479(1)	183.84(1)	185.207(1)	190 23(3)	192.217(3)	195.078(2)	195.96555(2)	200.59(2)	204.3833(2)	207.2(1)	208.98038(2)	[209]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr [223]	Ra	Lr 12521	Rf	Db	Sg	Bh	HS	Mt 12761	DS 12811	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
													•				
		lanthanum	cerium	praseodymium	neodymium	promethium	samatum	europium	gedolinium	terbium	dysprosium	holmium	erbium	Pullum	ytterbium	1	
Lopthor	noida	57	58	59	60 N.d	61	62	63	64 Cd	65 Th	66	67	68	-69 	70	1	
Lanunai	IUIUS	La	Ce	F1	NU	FIII	3111	Eu	Gu	ID.	Dy	по	EI		10	1	
		138.9055(2) adinium	140.116(1) Shorium	140.90765(2) protectinium	144.24(3) uranium	[145] neptunium	150.36(3) plutonium	151.964(1) americium	157.25(3) curium	158.92534(2) berkelium	162.500(1) californium	164.93032(2) einsteinium	167.259(3) fermium	165.93421(2) mendelevium	173.054(5) nobelium	1	
Actinoid	le		Th	Pa	92	Nn	Pu	Δm	Cm	Bk	Čf	Fs	Fm	Md	NO	l	
,		[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[256]	[259]	J	
Bineter system and sames, system, down a down and system and system and served by CPU, Diversing and a system and serve and served by the down and system and serve and served by the down and system and served by the down and system and served by the down and served by the do																	

Answers steppings mathematics states (see the state stepsing) and the stepping stepp

Symmetry Dictates Physics!

The essence of the physics behind the periodic table is based on **THREE symmetry principles**:

- Dynamics: U(1) gauge symmetry \Rightarrow Coulomb Potential.
- Geometry: SO(3) rotational symmetry ⇒ angular momentum conservation.
- Statistics: Pauli exclusion principle \Rightarrow atomic shell structure.

Symmetry and Dynamics

1. General Covariance Relativity (Gravity) \Rightarrow (Equivalence principle) (Hilbert-Einstein action) 2. Gauge Invariance Standard Model \Rightarrow (local phase transformation) (Yang-Mills action) ? 3. Quantum Gravity \Rightarrow

What is String Theory?

A perturbative prescription

- Fundamental degrees of freedom: shape of the string ⇒ vibration frequency ⇒ mass, direction ⇒ spin internal charges can be engineered by D-brane (open channel) or compactification (closed channel)
- Dynamics: area and topology of the world-sheet gluing of clothes and pants ⇒ Feynman Rules
- 3. Symmetries: irrelevant oscillations \Rightarrow gauge symmetry freedom of defining local coordinate \Rightarrow duality Global Symmetry?

A Hint from Supersymmetry:

- Unification of bosons and fermions

symmetry charges carry spin 1/2. ($Q \sim \sqrt{P}$)

fermionic nature implies finite trucation.

 $\mathbf{2}\leftrightarrow \tfrac{3}{2}\leftrightarrow \mathbf{1}\leftrightarrow \tfrac{1}{2}\leftrightarrow \mathbf{0}$

True Unification of Space-time and Matter:

-Unification of graviton and gauge bosons (and fermions)

(basic) symmetry charges carry spin 1.

bosonic nature implies infinite multiplet! $\Rightarrow \infty$ # of particles + symmetry!

Introduction

Infinite Gauge Symmetry of Open String Theory

- First Quantized String Theory: canonical transformation in phase space (G. Veneziano)
- (2) World-sheet description: deformed conformal symmetry (M. Evans & B. Ovrut)
- (3) First Quantized String Theory: old covariant quantization ⇒ zero-norm states (J. C. Lee)
- (4) Witten's Open String Field Theory: $\delta \Psi = Q \cdot \Lambda + g_s[\Psi, \Lambda]$ Chern-Simon's action in loop space

Progress of Theoretical Physics, Vol. 91, No. 2, February 1994

Generalized On-Shell Ward Identities in String Theory

Jen-Chi Lee

Institute of Physics, National Chiao Tung University, Hsin Chu, Taiwan

(Received September 27, 1993)

It is demonstrated that an infinite set of string-tree-level on-sheft Ward identities, which are valid to all σ -model loop orders, can be systematically constructed without referring to the string field theory. As examples, bosonic massive scattering amplitudes are calculated explicitly up to the second massive excited states. Ward identities satisfied by these amplitudes are derived by using zero-norm states in the spectrum. In particular, the inter-particle Ward identity generated by the $D_x \otimes D_x$ zero-norm state at the second massive level is demonstrated. The four physical propagating states of this mass level are then shown to form a large gauge multiplet. This result justifies our previous consideration on higher inter-spin symmetry from the generalized worldsheet σ -model point of view.

II. High Energy Symmetry of String Theory

VOLUME 60, NUMBER 13

PHYSICAL REVIEW LETTERS

28 MARCH 1988

High-Energy Symmetries of String Theory

David J. Gross

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 12 February 1988)

By means of a recent analysis of the high-energy limit of string scattering, linear relations between string-scattering amplitudes are derived. These are shown to hold order by order in perturbation theory. If one assumes that they hold for the full theory, they suggest the existence of an enormous stringbroken symmetry which is restored at high energies. Some speculations as to the nature of this symmetry are presented.

PACS numbers: 11.17.+y

It is often the case that spontaneously broken symmetries of a physical theory are hard to recognize at low energy, but become evident in the high-energy behavior of the theory. Thus, the broken SU(2) @U(1) symmetry of the electroweak interactions can be seen by examination of weak scattering amplitudes at energies high enough that the W and Z₀ masses can be neglected. String theory surely possesses a very rich symmetry, as suggested by its incredible degree of uniqueness; however, this symmetry is little understood. Presumably this is because most of the string symmetry is spontaneously broken in the known ground states, leaving only the familiar gauge symmetries unbroken and manifest. Perhaps all the string states are gauge particles, but most are massive because of spontaneous symmetry breaking. effective field theory. As stressed in the work of Gross and Mende,¹ the high-energy behavior of strings is very strings and cannot be reproduced by an effective localfield theory. In ordinary general relativity this limit, which is the same as the strong-coupling limit of gravity, $G_{\rm Newton} \ll 1/M_{\rm Planck}$ is difficult to discuss since the theory breaks down in the ultraviolet. String theory does not necessarily suffer from this limitation. Finding this enlarged symmetry should help us to understand the structure of string physics at high energies. This is not just an academic issue; it is also crucial if we are to understand the Planckian-scale dynamics that determines the nature of the string ground state.

Recently, the high-energy behavior of string scattering was studied by saddle-point techniques.^{1,2}

General Pattern of High-Energy Scattering Amplitudes (HESA) among Stringy Excitations (4-point functions)

$$\mathcal{A}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{\alpha}'; \boldsymbol{n}_i, \epsilon_i) = \mathcal{C}(\boldsymbol{n}_i, \epsilon_i) \mathcal{R}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{\alpha}'; \boldsymbol{n}_i \epsilon_i) \boldsymbol{e}^{-\boldsymbol{\alpha}' \boldsymbol{f}(\boldsymbol{s}, t)}$$

- C(n_i, ε_i) is a numerical coefficient, which gives rise to linear proportional relations among HESA.
- *R*(*s*, *t*, α'; *n_iε_i*) is a rational function of Mandelstam variables, which describes the subleading energy dependence and filter out the leading states.
- $\exp -\frac{\alpha'}{2} \left[-(s+t) \ln(s+t) + s \ln(s) t \ln(-t) \right]$ is the universal tachyonic tail (surpression of high-energy divergence).

High Energy Symmetry of String Theory

Main Results for HESS in flat space-time:

- At any fixed mass level, only one independent high-energy scattering amplitude! $T_{TT\cdots T}^{n} \equiv \langle V_1 V_2^{(n)}(TT\cdots T) V_3 V_4 \rangle$
- All other leading amplitudes are proportional to Tⁿ_{TT···T} and the proportional constants are independent of

(i) scattering angle (ii) scattering process (iii) string loop-order $\!\chi$

$$< V_1 V_2^{(n)} (J_2, k) V_3 V_4 >_{\chi} \propto < V_1 V_2^{(n)} \left(ilde{J}_2, k
ight) V_3 V_4 >_{\chi}$$

- The proportional constants can be calculated by algebraic means and originate from zero-norm states.
- 3 Master formula for inter-level relation: $n = n_1 + n_2 + n_3 + n_4$

$$T_{T_1 \cdots T_1 T_2 \cdots T_2 T_3 \cdots T_3 T_4 \cdots T_4}^{n_1 n_2 n_3 n_4} = (-2E^3 \sin \phi)^n \exp\left\{-\frac{\alpha'}{2} \left[s \ln(s) + t \ln(t) + u \ln(u)\right]\right\}$$

III. Background (In)dependence of String Theory

Chuan-Tsung Chan (Department of Physics, Deformation of the High Energy Symmetry in

Background (In)dependence of String Theory

Einstein-Hilbert action for pure gravity

$$S_{EH} = \frac{1}{16\pi G} \int d^4 x \sqrt{-g}R, \quad \text{expand } g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},$$

$$\Rightarrow S_{EH} = \frac{1}{16\pi G} \int d^4 x (\partial h \partial h + h \partial h \partial h + h^2 \partial h \partial h + \cdots)$$

Similarly, in gauge theory with SSB

$$\begin{split} S_{gauge} &= \int d^4x \left[-\frac{1}{4} F^2 + |D\phi|^2 - U\left(\phi; \mu^2, \lambda\right) \right], \text{ expand } \phi = \frac{v}{\sqrt{2}}, \\ \text{we get } \mathcal{L}_{gauge} &= -\frac{1}{4} F^2 + \frac{1}{2} M^2 B^2 + e^2 v \chi B^2 + \frac{1}{2} e^2 \chi^2 B^2 \\ &+ \frac{1}{2} \left(\partial \chi \right)^2 - \mu^2 \chi^2 - \sqrt{\lambda} \mu \chi^3 - \frac{\lambda}{4} \chi^4 + \frac{\mu^4}{4\lambda}, \\ \text{where } \phi &\equiv -\frac{1}{\sqrt{2}} \left(v + \chi \right) \exp\left(i\theta \right), \ v = \sqrt{\frac{\mu^2}{\lambda}}, \ F_{\mu\nu} \equiv \partial_\mu B_\nu - \partial_\nu B_\mu. \end{split}$$

A non-perturbative formulation of string theory has to provide a starting point for expansion around arbitrary backgrounds.

Strategy: Push the theory to special limit and look for simplification!

\Rightarrow High-energy expansion of string scattering amplitudes.

String theory is a (infinitely) higher-spin gauge theory with spontaneous symmetry breaking.

Assuming that we are focusing on the transplanckian kinematic region (so that the vaccum expectation values can be ignored), the symmetry pattern among leading scattering amplitudes should reflect the global symmetry of Goldstone bosons.

\Rightarrow A higher-spin generaliztion of equivalence theorem.

Chuan-Tsung Chan (Department of Physics, Deformation of the High Energy Symmetry in

Special Features of String Theory in the Linear Dilaton Background

Deformation of the conformal symmetry

$$T = -\frac{1}{\alpha'}\partial X \cdot \partial X + V \cdot \partial^2 X, \qquad V = \partial \Phi.$$

$$\Rightarrow [L_m, L_n] = (m-n)L_{m+n} + \frac{D + 6\alpha' V^2}{12}m(m^2 - 1)\delta_{m+n}$$

Consequences:

- modified on-shell condition: e.g., "photon" $\alpha' k (k + iV) = 0, \epsilon (k + iV) = 0$.
- modified inner product for quantum state: $\langle k'|k \rangle = (2\pi)^D \delta^{(D)}(k'^* k iV).$
- modified vertex operators (extra factor).

Vertex operators for low-lying stringy excitations:

$$\begin{aligned} |T(k)\rangle &: e^{-\alpha' k \cdot V\tau} e^{ik \cdot X} : \\ |P(\zeta, k)\rangle &: \frac{\zeta \cdot (\dot{X} + i\alpha' V)}{\sqrt{2\alpha'}} e^{-\alpha' k \cdot V\tau} e^{ik \cdot X} : \\ M(\epsilon_{\mu\nu}, k)\rangle &: \Big[\frac{\epsilon_{\mu\nu}}{2\alpha'} (\dot{X}^{\mu} + i\alpha' V^{\mu}) (\dot{X}^{\nu} + i\alpha' V^{\nu}) - \frac{i\epsilon}{\sqrt{2\alpha'}} \cdot \ddot{X} \Big] e^{-\alpha' k \cdot V\tau} e^{ik \cdot X} : \end{aligned}$$

Oscillator basis for low-lying stringy excitations:

$$\begin{split} |T(k)\rangle &\equiv |0,k\rangle, \quad \text{with} \quad \alpha'k \cdot (k+iV) = 1. \\ |P(\zeta,k)\rangle &\equiv \zeta_{\mu}\alpha_{-1}^{\mu}|0,k\rangle, \quad \text{with} \quad \alpha'k \cdot (k+iV) = 0, \quad \text{and} \quad \zeta \cdot (k+iV) = 0. \\ |M(\epsilon_{\mu\nu},k)\rangle &= (\epsilon_{\mu\nu}\alpha_{-1}^{\mu}\alpha_{-1}^{\nu} + \epsilon_{\mu}\alpha_{-2}^{\mu})|0,k\rangle, \quad \text{with} \quad \alpha'k \cdot (k+iV) = -1. \\ \mathcal{L}_{1}|M(\epsilon_{\mu\nu},k)\rangle &= 0, \quad \text{gives} \quad \sqrt{2\alpha'}\epsilon_{\mu\nu}(k^{\nu}+iV^{\nu}) + \epsilon_{\mu} = 0, \\ \mathcal{L}_{2}|M(\epsilon_{\mu\nu},k)\rangle &= 0, \quad \text{gives} \quad \epsilon_{\mu\nu}\eta^{\mu\nu} + \sqrt{2\alpha'}\epsilon_{\mu}(2k^{\mu}+3iV^{\mu}) = 0. \end{split}$$

Spectrum of Zero-norm States at $\alpha m^2 = 1$:

$$\begin{split} |ZNS_{I}(L)\rangle &= \begin{bmatrix} \left(-iv - \frac{v^{2}}{2}\right)\alpha_{-1}^{P}\alpha_{-1}^{P} + \left(iv - \frac{v^{2}}{2}\right)\alpha_{-1}^{L}\alpha_{-1}^{L} \\ + (2 + v^{2})\alpha_{-1}^{P}\alpha_{-1}^{L} - \frac{iv}{\sqrt{2}}\alpha_{-2}^{P} + \left(\sqrt{2} + \frac{iv}{\sqrt{2}}\right)\alpha_{-2}^{L} \end{bmatrix} |0,k\rangle \\ |ZNS_{I}(T_{i})\rangle &= \sum_{i=1}^{24} u_{PT_{i}} \left[2\alpha_{-1}^{P}\alpha_{-1}^{T_{i}} + \frac{iv}{2 - iv}\alpha_{-1}^{T_{i}} + \frac{2\sqrt{2}}{2 - iv}\alpha_{-2}^{T_{i}} \right] |0,k\rangle \\ |ZNS_{I}(T_{i})\rangle &= \begin{bmatrix} \left(5 - 6iv - \frac{3v^{2}}{2}\right)\alpha_{-1}^{P}\alpha_{-1}^{P} + \left(1 - \frac{3v^{2}}{2}\right)\alpha_{-1}^{L}\alpha_{-1}^{L} \\ + \sum_{i=1}^{24}\alpha_{-1}^{T_{i}}\alpha_{-1}^{T_{i}} + \left(6iv + 3v^{2}\right)\alpha_{-1}^{P}\alpha_{-1}^{L} \\ + \left(\frac{10}{\sqrt{2}} - \frac{7iv}{\sqrt{2}}\right)\alpha_{-2}^{P} + \frac{7iv}{\sqrt{2}}\alpha_{-2}^{L} \end{bmatrix} |0,k\rangle \end{split}$$

Main Results in our calculations (hep-th/0905.2322)

- We solved the Virasoro constraints up to the first massive level and obtained the spectrum as a continuous function of moduli parameter (V_0).
- We checked the on-shell stringy Ward identities hold true up to the first massive level with the generalized on-shell conditions and modified energy-momentum conservation law.
- Solution We examined the deformation of the high-energy stringy symmetry from $V_0 = 0$ to $V_0 \rightarrow \infty$ limit.

	Flat Background ($V_0 = 0, E \rightarrow \infty$)	Linear Dilaton Background ($V_0/E \rightarrow \infty, E \rightarrow \infty$)
$T \rightarrow P$	$2^{\frac{3}{2}}\sqrt{\alpha'}E$ tan $\frac{\phi}{2}$	$2^{\frac{3}{2}}\sqrt{\alpha'}E\tan\frac{\phi}{2}$
$P \rightarrow M_{LL}$	$2^{-\frac{1}{2}}\sqrt{\alpha'}E\tan\frac{\phi}{2}$	$2^{-\frac{1}{2}} \alpha'^{\frac{3}{2}} EV_0^2 \cot \frac{\phi}{2}$
$P \rightarrow M_{LT}$	$2^{-\frac{1}{2}} \frac{\cos \phi}{\cos^2 \frac{\phi}{2}}$	$2^{\frac{1}{2}}\alpha' EV_0$
$P \rightarrow M_{TT}$	$2^{\frac{3}{2}}\sqrt{\alpha'}E$ tan $\frac{\phi}{2}$	$2^{\frac{3}{2}}\sqrt{\alpha'}E\tan\frac{\phi}{2}$
$P \rightarrow M_L$	0	$\frac{2i\sqrt{\alpha'}V_0(1+\sin^2\frac{\phi}{2})}{\sin\phi}$
$P \rightarrow M_T$	0	$2^{-\frac{1}{2}} \sec^2 \frac{\phi}{2}$
$T \rightarrow M_{LL}$	$2\alpha' E^2 \tan^2 \frac{\phi}{2}$	$2\alpha'^2 E^2 V_0^2$
$T \rightarrow M_{LT}$	$2\sqrt{\alpha'}E\frac{\cos\phi}{\cos^2\frac{\phi}{2}}\tan\frac{\phi}{2}$	$2^2 \alpha'^{\frac{3}{2}} E^2 V_0 \tan \frac{\phi}{2}$
$T \rightarrow M_{TT}$	$2^3 \alpha' E^2 \tan^2 \frac{\phi}{2}$	$2^3 \alpha' E^2 \tan^2 \frac{\phi}{2}$
$T \rightarrow M_L$	0	$\frac{2^{\frac{3}{2}}i\alpha' EV_0\left(1+\sin^2\frac{\phi}{2}\right)}{\cos^2\frac{\phi}{2}}$
$T \rightarrow M_T$	0	$2\sqrt{\alpha'}E\sec^2\frac{\phi}{2}\tan\frac{\phi}{2}$

$$SO(3)$$
 algebra= $\vec{L} \equiv \vec{r} \times \vec{P}(\text{set } \hbar = 1)$

$$\begin{cases} [L_x, L_y] = iL_z \\ [L_y, L_z] = iL_x \\ [L_z, L_x] = iL_y \end{cases}, \begin{cases} [L_x, L_y] = yP_z - zP_y \\ [L_y, L_z] = zP_x - xP_z \\ [L_z, L_x] = xP_y - yP_x \end{cases} \Rightarrow \begin{cases} [P_x, P_y] = 0 \\ [P_x, L_z] = -iP_y \\ [P_y, L_z] = iP_x \end{cases}$$

Rescale $z \to \xi z'$, and take $\xi \to \infty$ limit.

Squash the sphere!
$$\frac{x^2}{R^2} + \frac{y^2}{R^2} + \frac{z^2}{R^2} = 1 \Rightarrow \frac{x^2}{R^2} + \frac{y^2}{R^2} + \frac{z'^2}{\left(\frac{R}{\xi}\right)^2} = 1.$$

 $L_x \to -P_y, L_y \to P_x, L_{z'} = L_z.$

SO(3): isometry $\rightarrow E(2)$ Euclidean Group!

V. Conclusion

Summary of This Talk

- Concrete Realization of Gross' Conjectures on the High-Energy Symmetry of String Theory.
- Connection between High-Energy Stringy Symmetry and infinite stringy gauge symmetry.
- Deformation of High-Energy Stringy Symmetry as a function of moduli parameters.
- Stringy Generalization of Equivalence Theorem for SSB?

Thank You!!