---hadronic spectroscopy

Cong-Feng Qiao Graduate University Chinese Academy of Sciences

Contents

Introduction

Charmonium-like states--the experimental realities

Charmed Baryonium, Hybrid and Glueball

- Summary

I. Introcinieciont After the discovery of J / ψ in 1974 , the

 potential model was proposed, which can describe charmonium very well, like the Cornell potential$$
V(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r
$$

The success of potential model makes people believe its legitimacy in describing meson mass spectrum, especially in heavy sector

Charmonium spectroscopy: experimental measurements vs theoretical predictions.

Many resonant states predicted by potential model were confirmed by experiments in the past decades

Nevertheless, the QCD does not rule out the existence of so-called "exotic" states, that is hadronic states other than regular meson and baryon, like glueball, hybrid, multiquark state, etc.

> B- and Charm-factories provide large dataset for studying the charm and beauty hadrons, which enables even the study of exotic states feasible

Exotic states study may shed light on the nature of non-perturbative interaction and enrich our knowledge of hadron physics

Puzzles: we bump into the exotic state era
The discovery of X(3872) in 2003 exhibit unusual properties which can't be explained as conventional charmonium state

There were many models being proposed for the interpretation of X, the most popular ones include

$q \bar{q}-$ gluon"hybrid"

Soon after X(3872), a series of new hadronic structures, like Y , were observed by different experiment groups

Table II: Measured parameters of the Y states

State	$M, \mathrm{MeV} / c^{2}$	$\Gamma_{\text {tot }}, \mathrm{MeV}$	$J^{P C}$	Decay Modes	Production	Collaboration
$Y(4008)$	$4008 \pm 40_{-28}^{+114}$	$226 \pm 44 \pm 87$	1^{--}	$\pi^{+} \pi^{-} J / \psi$	$e^{+} e^{-}$(ISF)	Belle 07 [12]
$Y(4260)$	$4259 \pm 8_{-6}^{+2}$	$88 \pm 23_{-4}^{+6}$	1^{--}	$\pi^{+} \pi^{-} J / \psi$	$e^{+} e^{-}$(ISR)	BaBar 05 [9]
$Y(4260)$	$4252 \pm 6_{-3}^{+2}$	$105 \pm 18_{-6}^{+4}$	1^{--}	$\pi^{+} \pi^{-} J / \psi$	$e^{+} e^{-}$(ISR)	EaBar 08 [45]
$Y(4260)$	$4247 \pm 12_{-32}^{+17}$	$108 \pm 19 \pm 10$	1^{--}	$\pi^{+} \pi^{-} J / \psi$	$e^{+} e^{-}$(ISF)	Belle 07[10]
$Y(4325)$	4324 ± 24	172 ± 33	1^{--}	$\pi^{+} \pi^{-} \psi(2 S)$	$e^{+} e^{-}$(ISR)	EaBar 06 [11]
$Y(4325)$	$4361 \pm 9 \pm 9$	$74 \pm 15 \pm 10$	1^{--}	$\pi^{+} \pi^{-} \psi(2 S)$	$e^{+} e^{-}$(ISF)	Belle 07 [12]
$Y(4660)$	$4664 \pm 11 \pm 54$	$48 \pm 15 \pm 3$	1^{--}	$\pi^{+} \pi^{-} \psi(2 S)$	$e^{+} e^{-}$(ISF)	Belle 07 [12]
$X(4630)$	4634_{-7-8}^{+8+5}	92_{-24-21}^{+40+10}	1^{--}	$\Lambda_{c}^{+} \Lambda_{c}^{-}$	$e^{+} e^{-}$(ISR)	Belle 08 [13]

According to the production mechanism, the newly found charmonium-like states X, Y, Z can be categorized in four groups:

$\left(c^{+}+c^{-}\right)_{\mathrm{ISR}} \rightarrow(c \bar{c})$	$b \rightarrow s(c \bar{c})$	$c^{+}+c^{-} \rightarrow J / \psi+(c \bar{c})$	$\gamma \gamma \text { fusion }$
$\begin{aligned} & Y(4260) \\ & Y(4008) \\ & Y(4320) \\ & Y(4664) \\ & X(3773) \end{aligned}$	$\begin{gathered} X(3872) \\ Y(3940) \\ Z^{+}(4430) \\ Z^{+}(4051) \\ Z^{+}(4248) \\ Y(1140) \\ Y(4274) \end{gathered}$	$\begin{aligned} & X(3940) \\ & X(4160) \end{aligned}$	$\begin{aligned} & Z(3930) \\ & Y(3915) \\ & Y(4350) \end{aligned}$

These are

These states' quantum number, mass, and decay patterns make them unlike the conventional charmonium states

Via ISR method, many $1^{\text {-- }}$ states were discovered, by this method the final state has the same quantum number with photon
$Y(4260), Y(4360), Y(4660)$, their mass are much higher than open charm threshold, while decay patterns are not as same as usual states
Z (4433) has electric charge, which is obviously exotic states with hidden charm

- How to understand these unusual structures becomes a hot topic currently

Baryonium

In baryonium scheme $\Lambda_{c}-\Sigma_{c}$ can be taken as basis vector, one can make up four baryonantibaryon configuration

Due to the spin structure of Fermions, many fine structures exist naturally, then it may explain why there exist so many 1^{--}states

$Y(4260)$ is treated as loosely bound state of Lamda_c and anti Lamda_c

Imitate the isospin for proton and neutron, introducing C-spin

$$
\begin{aligned}
& B_{1}^{+} \equiv \mid \Lambda_{c}^{+} \bar{\Sigma}_{c}^{0}> \\
& \left.B_{1}^{0} \equiv \frac{1}{\sqrt{2}}\left(\left|\Lambda_{c}^{+} \bar{\Lambda}_{c}>-\right| \Sigma_{c}^{0} \bar{\Sigma}_{c}^{0}\right\rangle\right) \quad B_{0}^{0} \equiv \frac{1}{\sqrt{2}}\left(\left|\Lambda_{c}^{+} \bar{\Lambda}_{c}\right\rangle+\mid \Sigma_{c}^{0} \bar{\Sigma}_{c}^{0}>\right) \\
& B_{1}^{-} \equiv\left|\Lambda_{c}^{-} \Sigma_{c}^{0}\right\rangle
\end{aligned}
$$

QCF, PLB2006, JPG2008

Heavy
 Heavy flavor hadron contains both heavy and light quark, so it has heavy quark symmetry and chiral symmetry

In order to deal with baryon antibaryon bound state, we employ the Heavy flavor chiral perturbation theory

Heavy flavor chiral perturbative theory collecting both heavy and light properties of quarks in the hadrons, which extend chiral perturbation theory to heavy sector

In terms of Heavy flavor chiral perturbation theory, we make use of the method of treating NN potential to extract potential

Lagrangian

In dealing with the light meson system

$$
\begin{aligned}
U(x) & =\exp \left(i \frac{\phi(x)}{F_{0}}\right) \\
\phi(x) & =\sum_{a=1}^{8} \lambda_{a} \phi_{a}(x) \equiv\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{\sqrt{3}} \eta
\end{array}\right) \\
\mathcal{L}_{\text {eff }} & =\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)
\end{aligned}
$$

Lagrangian containing heavy quarks

$$
\begin{aligned}
\mathcal{L}_{B}= & \operatorname{tr[}\left[\bar{B}_{\overline{3}}\left(i D-M_{\overline{3}}\right) B_{\bar{B}}\right]+\operatorname{tr}\left[\bar{B}_{6}\left(i D-M_{6}\right) B_{6}\right] \\
& +\operatorname{tr}\left(\bar{B}_{6}^{* \mu}\left[-g_{\mu \nu}\left(i \bar{D}-M_{6}^{*}\right)+i\left(\gamma_{\mu} D_{v}+\gamma_{v} D_{\mu}\right)-\gamma_{\mu}\left(i D+M_{6}^{*}\right) \gamma_{v}\right] B_{6}^{* v}\right\} \\
& +g_{1} \operatorname{tr}\left(\bar{B}_{6} \gamma_{\mu} \gamma_{5} A^{\mu} B_{6}\right)+g_{2} \operatorname{tr}\left(\bar{B}_{6} \gamma_{\mu} \gamma_{5} A^{\mu} B_{\overline{3}}\right)+\text { H.c. } \\
& +g_{3} \operatorname{tr}\left(\bar{B}_{6 \mu}^{*} A^{\mu} B_{6}\right)+\text { H.c. }+g_{4} \operatorname{tr}\left(\bar{B}_{6}^{* \mu} A_{\mu} B_{\overline{3}}\right)+\text { H.c. }+g_{5} \operatorname{tr}\left(\bar{B}_{6}^{* v} \gamma_{\mu} \gamma_{5} A^{\mu} B_{6 v}^{*}\right)+g_{6} \operatorname{tr}\left(\bar{B}_{\overline{3}} \gamma_{\mu} \gamma_{5} A^{\mu} B_{\overline{3}}\right)
\end{aligned}
$$

$$
B_{6}=\left(\begin{array}{ccc}
\Sigma_{Q}^{+1} & \frac{1}{\sqrt{2}} \Sigma_{Q}^{0} & \frac{1}{\sqrt{2}} \Xi_{Q}^{\prime+1 / 2} \\
\frac{1}{\sqrt{2}} \Sigma_{Q}^{0} & \Sigma_{Q}^{-1} & \frac{1}{\sqrt{2}} \Xi_{Q}^{-1 / 2} \\
\frac{1}{\sqrt{2}} \Xi_{Q}^{\prime+1 / 2} & \frac{1}{\sqrt{2}} \Xi_{Q}^{\prime-1 / 2} & \Omega_{Q}
\end{array}\right) \quad B_{\overline{3}}=\left(\begin{array}{ccc}
0 & \Lambda_{Q} & \Xi_{Q}^{+1 / 2} \\
-\Lambda_{Q} & 0 & \Xi_{Q}^{-1 / 2} \\
-\Xi_{Q}^{+1 / 2} & -\Xi_{Q}^{-1 / 2} & 0
\end{array}\right]
$$

Expand the above Lagrangian we obtain what is relevant to our problem:

$$
\begin{aligned}
& \mathcal{L}_{2}=-\frac{g_{3}}{2 f_{\pi}} \bar{\Sigma}_{\mu}^{+*} \partial^{\mu} \pi^{+} \Sigma^{0}+H . c \\
& L_{4}=\frac{-g_{4}}{\sqrt{2} f_{\pi}} \Sigma^{-++} \partial_{\mu} \pi^{+} \Lambda^{+}+H . c
\end{aligned}
$$

We may get the two body scattering amplitude, and then doing the non-relativistic expansion and spinor reduction

In terms of heavy quark chrial perturbative theory, following steps are necessary

1) Compute the scattering amplitude, defined in terms of the S matrix element
2) Perform the non-relativistic limit and including form factor
3) Obtain the potential $V(r)$ via the Fourier transform
4) Solving Schrodinger Equation

Contribution to potential

Due to isospin conservation in strong interaction, the potential is generated at loop level

In principle all terms at the fourth order should be included

- The basic diagrams are:

After a lengthy calculation, one finally obtain the $A_{c} \bar{\Lambda}_{c}$ potential

$$
\begin{aligned}
V_{C}\left(r_{1}, r_{2}\right)= & -\left(\frac{g_{4}^{4}}{f_{\pi}^{4}}\right) \iint \frac{d^{3} \mathbf{k}_{1} d^{3} \mathbf{k}_{2}}{(2 \pi)^{6}} \frac{O_{1}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) e^{i \mathbf{k}_{1} \mathbf{r}_{1}} e^{i \mathbf{k}_{\mathbf{2}} \mathbf{r}_{2}} F\left(\mathbf{k}_{1}^{2}\right) F\left(\mathbf{k}_{2}^{2}\right)}{2 E_{\mathbf{k}_{1}} E_{\mathbf{k}_{2}}\left(E_{\mathbf{k}_{1}}+\Delta_{1}\right)\left(E_{\mathbf{k}_{2}}+\Delta_{1}\right)\left(E_{\mathbf{k}_{1}}+E_{\mathbf{k}_{2}}\right)} \\
= & -\left(\frac{g_{4}^{4}}{f_{\pi}^{4}}\right)\left[\frac{1}{\pi} \int_{0}^{\infty} \frac{d \lambda}{\Delta_{1}^{2}+\lambda^{2}} O_{1}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) F\left(\lambda, r_{1}\right) F\left(\lambda, r_{2}\right)\right. \\
& \left.-\frac{2 \Delta_{1}}{\pi^{2}} O_{1}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \int_{0}^{\infty} \frac{d \lambda}{\Delta_{1}^{2}+\lambda^{2}} F\left(\lambda, r_{1}\right) \int_{0}^{\infty} \frac{d \lambda}{\Delta_{1}^{2}+\lambda^{2}} F\left(\lambda, r_{2}\right)\right] \\
= & -\frac{g_{4}^{4} \Lambda^{5} m}{128 \sqrt{2} f_{\pi}^{4} \Delta_{1}^{2} \pi^{7 / 2}} \frac{1}{r} e^{-\frac{\Lambda^{2} r^{2}}{2}}+\cdots
\end{aligned}
$$

Chen and QCF, Arxiv: 1102,3487

The $\Lambda_{c} \bar{A}_{c}$ potential beheaves like

Figure 2: The $\Lambda_{c}-\bar{\Lambda}_{c}$ central potential behavior versus different parameter choices.

With the obtained potential, by solving Schrodinger equation one can readily get $\Lambda_{c} \bar{\Lambda}_{c}$ baryonium eigenvalue of

Figure 3: Radial wave function of $\Lambda_{c}-\bar{\Lambda}_{c}$ ground state under the condition of $g_{2}=0.63$ and $\Lambda=0.75$. The $\Sigma_{c}-\bar{\Sigma}_{c}$ system wave function having a similar shape under certain choice of parameters is hence not shown here.

The binding energies for $\Lambda_{c}-\bar{\Lambda}_{c}$ and $\Sigma_{c}-\bar{\Sigma}_{c}$ systems go like

Table 2: Binding energies with the change of parameters. The left one is for the $\Lambda_{c}-\bar{\Lambda}_{c}$ system, and the right one for $\Sigma_{c}-\bar{\Sigma}_{c}$ system.

g_{2}	g_{4}	$\Lambda(\mathrm{GeV})$	Binding Energy	g_{1}	g_{3}	$\Lambda(\mathrm{GeV})$	Binding Energy
<0.6	<1.06	<0.7	Nope	<0.8	<0.7	<0.6	Nope
-0.61	1.06	0.7	-0.6 MeV	0.85	-0.74	0.6	Nope
-0.61	1.06	0.75	-58 MeV	0.85	-0.74	0.7	-14 MeV
-0.61	1.06	0.8	-252 MeV	0.85	-0.74	0.8	-307 MeV
-0.60	1.04	0.75	-30 MeV	0.8	-0.7	0.75	-24 MeV
-0.63	1.09	0.75	-113 MeV	0.85	-0.74	0.75	-121 MeV
-0.65	1.23	0.75	-206 MeV	0.9	-0.78	0.75	-317 MeV

ninallesthe heavy baryonium may really exist!

Charmominnark of QCD Sum Rules, In the framework of

 the two-point correlation function reads$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}^{\dagger}(0)\right\}|0\rangle
$$

Here, the interpolating current J goes like

$$
J_{\mu}(x)=g_{s} \bar{\psi}^{a}(x) \gamma^{\nu} \gamma_{5} \frac{\lambda_{a b}^{n}}{2} \tilde{G}_{\mu \nu}^{n}(x) \psi^{b}(x)
$$

Q.CF, Tang, Hao and Li, arXiv:1012.2614:

The typical diagrams concerned about are

By the operator product expansion (OPE) technique, the correlation function $\Pi_{V}\left(q^{2}\right)$ can be written as

$$
\begin{equation*}
\Pi_{V}\left(q^{2}\right)=\Pi^{\text {pert }}\left(q^{2}\right)+\Pi_{i}^{\text {cond }}\left(q^{2}\right) \tag{4}
\end{equation*}
$$

First, we calculate the imaginary part, the absorptive part, of the Feynman diagrams which represents the perturbative contribution to the correlator as, and result reads

$$
\begin{align*}
\rho^{\text {pert }}(t)= & -\frac{\alpha_{s} m_{Q}^{6}}{720 \pi^{2} \sqrt{1-t} t^{3}}\left[-15 t^{5}+185 t^{4}-778 t^{3}-496 t^{2}+1296 t-192\right. \\
& \left.+15 t^{2} \sqrt{1-t}\left(t^{3}-12 t^{2}+48 t-128\right) \log \frac{\sqrt{1-t}+1}{\sqrt{t}}\right] \tag{5}
\end{align*}
$$

where, $t=4 m_{Q}^{2} / s$, and m_{Q} is the mass of the heavy quark, and $\rho^{\text {pert }}(t) \equiv \operatorname{Im} \Pi(t)$.

The contributions coming from the diagrams of Figure 1 involving condensates are listed as follows:

$$
\begin{align*}
\Pi_{4}^{\text {cond,B }}\left(q^{2}\right) & =\int_{0}^{1} d x \frac{\left\langle g_{s}^{2} G^{2}\right\rangle}{48 \pi^{2}}\left\{\left[8(1-x) x q^{2}-11 m_{Q}^{2}\right]+\ln (\Delta)\left[2(1-x) x q^{2}-3 m_{Q}^{2}\right]\right\} \tag{6a}\\
\Pi_{6}^{\text {cond,C }}\left(q^{2}\right) & =\int_{0}^{1} d x \frac{\left\langle g_{s}^{3} G^{3}\right\rangle}{192 \pi^{2}}\left[3 x \ln (\Delta)+\frac{2 x m_{Q}^{2}}{\Delta}+17 x\right] \tag{6b}\\
\Pi_{6}^{\text {cond, } \mathrm{D}}\left(q^{2}\right) & =\int_{0}^{1} d x \frac{\left\langle g_{s}^{3} G^{3}\right\rangle}{384 \pi^{2}}\left\{2 x(2-3 x) \ln (\Delta)-\frac{\left[2(3-4 x) m_{Q}^{2}+x\left(14 x^{2}-27 x+13\right) q^{2}\right] x}{\Delta}\right. \\
& \left.+\frac{(x-1) q^{2}\left[3 x q^{2}(x-1)^{2}+(2-3 x) m_{Q}^{2}\right] x^{2}}{\Delta^{2}}+\frac{2(5-24 x) x}{3}\right\} \tag{6c}
\end{align*}
$$

Here, $\Delta=-(1-x) x q^{2}+m_{Q}^{2}$ and $\mathrm{B}, \mathrm{C}, \mathrm{D}$ correspond to the B, C and D diagrams, respectively.

After taking the standard QCD Sum Rule procedures, we obtain:

In the end we notain the masses of 1--

 charmonium himon$$
m_{H_{c}}=4.52_{-0.38}^{+0.27} \mathrm{GeV}
$$

$$
m_{H_{b}}=10.81_{-0.24}^{+0.23} \mathrm{GeV}
$$

The above theoretical predictions may

 confront to the experimental data now or later
Gluebail

In recent years, BESII and III observe hadronic structures around protonproton threshold, IIke X(1835), X(1859), $X(2120)$ and $X(2370)$

Possibly, the $X(1859)$ is a proton-proton bound state, or a glueball, or a mixture of exotic state with other regular states

We calculate the mass of $0^{\wedge}-+$ triplegluon state in the framework of Sum Rules

The mass lying between 1.9 to 2.7 GeV , which is in the energy region of BES newly found structures

Our calculation favors the baryoniumglueball mixing picture for BES observation

In the framework of QCD Sum Rules, the two-point correlation function reads

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}^{\dagger}(0)\right\}|0\rangle
$$

Here, the interpolating current J goes Ike

$$
j(x)=g_{s}^{3} f^{a b c} \widetilde{G}_{\mu \nu}^{a}(x) \tilde{G}_{\nu \rho}^{b}(x) \widetilde{G}_{\rho \mu}^{c}(x)
$$

The typical diagrams concerned about are

After taking the standard QCD Sum Rule procedures, we obtain the mass of triple gluon glueball is about $2 \mathbf{~ G e V}$

IV. Summanaly $\quad=$

 the existence of heavy baryoniumThe potential sensitivity on coupling constants and energy cutoff in our calculation looks unnatural and asks for further investigations

One should also investigate the potential while two baryon-like triquark clusters carrry colors

- The tough and confusing annihilation channel effect on the heavy baryonium potential should be clarified

We recalculate the 1^{\wedge}-- charmonium hybrid in the framework of QCD Sum Rules

The trigluon condensate contribution is taken into account, and we find it is necessary to attain a stable hybrid mass

The correct interpolate current is employed in our calculation

The predicted hybrid mass lying in 4.52 GeV , hence neither of the $Y(4260), Y(4360)$ and $Y(4660)$ states could be a pure hybrid sate

We calculated the triple gluon glueball mass, and found it lies in the region of BES recently observed structures

The relation between glueball, hybrid and baryonium with the exotic structures observed in experiment deserves more investigations

Thank for your attention!

