Search for new physics from

$$
\begin{aligned}
B \rightarrow & K_{2}^{*}(\rightarrow K \pi) l^{+} l^{-} \text {decays } \\
B_{s} \rightarrow & f_{2}^{\prime}(\rightarrow K K) l^{+} l^{-} \quad \\
& \text { Cai-Dian Lü (吕才典) }
\end{aligned}
$$

IHEP－中国科学院高能物理研究所

Based on collaboration with R．H．
Li（李润辉），and W．Wang（王伟）， arXiv：1012．2129，PRD83， 034034 （2011）

outline

- Introduction
- $B \rightarrow K_{2}^{*}(\rightarrow K \pi) l^{+} l^{-}$in SM
- Angular distribution
- BR, FBA, fL.

$$
\left(B_{s} \rightarrow f_{2}^{\prime} l^{+} l^{-}\right)
$$

- Two New Physics scenarios
- Brief introduction
- Parameters obtained by fitting
- Effect on the SM results
- Summary

Flavor changing Electroweak penguin operators

$$
\begin{aligned}
& O_{7}=\frac{\mathrm{em}_{b}}{8 \pi^{2}} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}+\frac{\mathrm{em}_{s}}{8 \pi^{2}} \bar{s} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b F_{\mu \nu} \\
& O_{9}=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\bar{l} \gamma_{\mu} l\right)\left(\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\right), \\
& O_{10}=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right)\left(\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\right) \\
& \text { No tree level flavor changing } \\
& \text { neutral current in SM }
\end{aligned}
$$

With QCD corrections from the

 four quark opera$H_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} V_{C K M} \sum_{i} C_{i} O_{i}$

$$
\begin{aligned}
& O_{1}=\bar{u} \gamma^{\mu} L u \cdot \bar{s} \gamma_{\mu} L b \\
& O_{3}=\bar{s} \gamma^{\mu} L b \cdot \sum_{q} \bar{q} \gamma_{\mu} L q \\
& O_{5}=\bar{s} \gamma^{\mu} L b \cdot \sum_{q} \bar{q} \gamma_{\mu} R q
\end{aligned}
$$

$$
\begin{aligned}
& O_{2}=\bar{s} \gamma^{\mu} L u \cdot \bar{u} \gamma_{\mu} L b \\
& O_{4}=\bar{s}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{q} \bar{q}_{\beta} \gamma_{\mu} L q_{\alpha} \\
& O_{6}=\bar{s}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{q} \bar{q}_{\beta} \gamma_{\mu} R q_{\alpha}
\end{aligned}
$$

Introduction

- Unlike $b \rightarrow s \gamma$ or $B \rightarrow K^{*} \gamma$, which have only limited physical observables
- $b \rightarrow s I^{+} l$, and especially $B \rightarrow K^{*} I^{+} l^{-}$, with a number of observables accessible (exp. also easier), provides a wealth of information of weak interactions, ranging from the forward-backward asymmetries, isospin asymmetries, and polarization fractions

About $K_{2}{ }^{*}(1430)$ and $f_{2}{ }^{\prime}(1525)$

$$
\begin{array}{cl}
\Gamma=100 \mathrm{MeV}, & 73 \mathrm{MeV} \\
\rightarrow K \pi & \rightarrow \mathrm{KK} \\
\hline
\end{array}
$$

l	s	J	${ }^{2 s+1} L_{J}$	$J^{P C}$	Meson
$l=0$	$s=0$	$J=0$	${ }^{1} S_{0}$	0^{-+}	Pseudoscalar (P)
	$s=1$	$J=1$	${ }^{3} S_{1}$	1^{--}	$\operatorname{Vector}(V)$
$l=1$	$s=0$	$J=1$	${ }^{1} P_{1}$	1^{+-}	Axial-vector $\left(A\left({ }^{1} P_{1}\right)\right)$
		$J=0$	${ }^{3} P_{0}$	0^{++}	Scalar (S)
		$J=1$	${ }^{3} P_{1}$	1^{++}	Axial-vector $\left(A\left({ }^{3} P_{1}\right)\right)$
		$J=2$	${ }^{3} P_{2}$	2^{++}	Tensor (T)

$$
B \rightarrow K_{2}^{*} I^{+} l^{-}\left(B_{s} \rightarrow f_{2}^{\prime} l^{+} l^{-}\right)
$$

- 5 polarization states: $\mathrm{Jz}=-2,-1,0,1,2$
- 3 contribute to $\bar{B}^{0} \rightarrow K_{2}^{*} l^{+} l^{-}, \mathrm{Jz}=-1,0,1$, because of angular momentum conservation
- Similar to K^{\star} mesons. $\quad \bar{B}^{0} \rightarrow K_{2}^{*} l^{+} l^{-}$ formulism can be got by some substitution in $\bar{B}^{0} \rightarrow K^{*} l^{+} l^{-}$formulism in PQCD approach.

Form factors needed for the exclusive decays

- Definition similar to the $B \rightarrow K^{*}$ case

$$
\left\langle K_{2}^{*}\left(P_{2}, \epsilon\right)\right| \bar{s} \gamma^{\mu} b\left|\bar{B}\left(P_{B}\right)\right\rangle=-\frac{2 V\left(q^{2}\right)}{m_{B}+m_{K_{2}^{*}}} \epsilon^{\mu \nu \rho \sigma} \epsilon_{T \nu}^{*} P_{B \rho} P_{2 \sigma},
$$

$$
\left\langle K_{2}^{*}\left(P_{2}, \epsilon\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b\left|\bar{B}\left(P_{B}\right)\right\rangle=2 i m_{K_{2}^{*}} A_{0}\left(q^{2}\right) \frac{\epsilon_{T}^{*} \cdot q}{q^{2}} q^{\mu}+i\left(m_{B}+m_{K_{2}^{*}}\right) A_{1}\left(q^{2}\right)\left[\epsilon_{T \mu}^{*}-\frac{\epsilon_{T}^{*} \cdot q}{q^{2}} q^{\mu}\right]
$$

$$
-i A_{2}\left(q^{2}\right) \frac{\epsilon_{T}^{*} \cdot q}{m_{B}+m_{K_{2}^{*}}}\left[P^{\mu}-\frac{m_{B}^{2}-m_{K_{2}^{*}}^{2}}{q^{2}} q^{\mu}\right]
$$

$\left\langle K_{2}^{*}\left(P_{2}, \epsilon\right)\right| \bar{s} \sigma^{\mu \nu} q_{\nu} b\left|\bar{B}\left(P_{B}\right)\right\rangle=-2 i T_{1}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \epsilon_{T \nu}^{*} P_{B \rho} P_{2 \sigma}$,
$\left\langle K_{2}^{*}\left(P_{2}, \epsilon\right)\right| \bar{s} \sigma^{\mu \nu} \gamma_{5} q_{\nu} b\left|\bar{B}\left(P_{B}\right)\right\rangle=T_{2}\left(q^{2}\right)\left[\left(m_{B}^{2}-m_{K_{2}^{*}}^{2}\right) \epsilon_{T \mu}^{*}-\epsilon_{T}^{*} \cdot q P^{\mu}\right]+T_{3}\left(q^{2}\right) \epsilon_{T}^{*} \cdot q\left[q^{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K_{2}^{*}}^{2}} P^{\mu}\right]$
Non-perturbative variables, difficult to calculate in QCD

Form factors calculated in pQCD to leading order of $1 / m_{b}$

F	$F(\mathrm{O})$	a	b
$V^{B K_{2}^{*}}$	0. $21{ }_{-0.04}^{+0.04+0.05}$	$1.73{ }_{-0.02}^{+0.02+0.05}$	$0.66{ }_{-0.05}^{+0.04+0.07}$
$A_{0}^{B K_{2}^{*}}$	0. $18{ }_{-0.03}^{+0.04+0.04}$	$1.7 \mathrm{O}_{-0.02}^{+0.00}+0.05$	$0.64{ }_{-0.06}^{+0.00}+0.04$
$A_{1}^{B K_{2}^{*}}$	0. $13{ }_{-0.02}^{+0.03}+0.03{ }_{-0.02}^{+0.03}$	$0.78{ }_{-0.01}^{+0.01+0.05}$	$-0.11{ }_{-0.03}^{+0.02}+0.04$
$A_{2}^{B K_{2}^{*}}$	$0.08{ }_{-0.02}^{+0.02}+0.02{ }_{-0.01}^{+0.02}$		
$T_{1}^{B K_{2}^{*}}$	O. $17{ }_{-0.03}^{+0.04+0.04}$	$1.73{ }_{-0.03}^{+0.00+0.05}$	$0.69{ }_{-0.08}^{+0.00}+0.05$
$T_{2}^{B K_{2}^{*}}$	O. $17{ }_{-0.03-0.03}^{+0.03+0.04}$	$0.79{ }_{-0.04-0.09}^{+0.00+0.02}$	$-0.06{ }_{-0.10}^{+0.00+0.00}$
$T_{3}^{B K_{2}^{*}}$	O. $144_{-0.03}^{+0.03+0.02}$	$1.61{ }_{-0.00}^{+0.01+0.09}$	$0.52{ }_{-0.01}^{+0.05}+0.15$
$V^{B_{s} f_{2}^{\prime}}$	0. $2 \mathrm{O}_{-0.03+0.03}^{+0.05}$	$1.75{ }_{-0.00}^{+0.02+0.05}$	$0.69{ }_{-0.01}^{+0.05}+0.08$
$A_{0}^{B_{s} f_{2}^{\prime}}$	O. $16{ }_{-0.02}^{+0.03}+{ }_{-0.02}^{+0.03}$	$1.69{ }_{-0.01}^{+0.00+0.04}$	$0.64{ }_{-0.04}^{+0.00}+0.00 .02$
$A_{1}^{B_{s} f_{2}^{\prime}}$	0. $12{ }_{-0.02}^{+0.02}+0.03$	$0.80_{-0.00}^{+0.02+0.07}$	$-0.11{ }_{-0.00}^{+0.05}+0.090$
$A_{2}^{B_{s} f_{2}^{\prime}}$	$0.09_{-0.01-0.01}^{+0.02+0.02}$		
$T_{1}^{B_{s} f_{2}^{\prime}}$	0. $16{ }_{-0.03}^{+0.03+0.04}$	$1.75{ }_{-0.00}^{+0.01+0.05}$	$0.71{ }_{-0.01}^{+0.03}+0.06$
$T_{2}^{B_{s} f_{2}^{\prime}}$	0. $16{ }_{-0.03}^{+0.03+0.02}+0.04$	$0.82{ }_{-0.04}^{+0.00+0.04}$	$-0.08{ }_{-0.09}^{+0.00+0.03}$
$T_{3}^{B_{s} f_{2}^{\prime}}$	O. $13{ }_{-0.02}^{+0.03+0.02}+0.03{ }_{-0.0}^{+0.02}$	$1.64{ }_{-0.00}^{+0.02+0.06}$	$0.57{ }_{-0.01}^{+0.04}{ }_{-0.09}^{+0.05}$
/4/5		W. Wang, PRD8	4008 - ${ }^{10}$

Branching ratios are proportional to form factors, have large uncertainties, but Angular distribution is not
Partial decay width

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{3}{8}\left|\mathcal{M}_{B}\right|^{2}
$$

$\left|\mathcal{M}_{B}\right|^{2}$ is decomposed into 11 terms

$$
\begin{aligned}
\left|\mathcal{M}_{B}\right|^{2}= & {\left[I_{1}^{c} C^{2}+2 I_{1}^{s} S^{2}+\left(I_{2}^{c} C^{2}+2 I_{2}^{s} S^{2}\right) \cos \left(2 \theta_{l}\right)\right.} \\
& +2 I_{3} S^{2} \sin ^{2} \theta_{l} \cos (2 \phi)+2 \sqrt{2} I_{4} C S \sin \left(2 \theta_{l}\right) \cos \phi \\
& +2 \sqrt{2} I_{5} C S \sin \left(\theta_{l}\right) \cos \phi+2 I_{6} S^{2} \cos \theta_{l} \\
& +2 \sqrt{2} I_{7} C S \sin \left(\theta_{l}\right) \sin \phi+2 \sqrt{2} I_{8} C S \sin \left(2 \theta_{l}\right) \sin \phi \\
& \left.+2 I_{9} S^{2} \sin ^{2} \theta_{l} \sin (2 \phi)\right]
\end{aligned}
$$

Angular distribution

$$
\begin{aligned}
I_{7} & =\sqrt{2} \beta_{l}\left[\operatorname{Im}\left(A_{L 0} A_{L \|}^{*}\right)-\operatorname{Im}\left(A_{R 0} A_{R \|}^{*}\right)\right] \\
I_{8} & =\frac{1}{\sqrt{2}} \beta_{l}^{2}\left[\operatorname{Im}\left(A_{L 0} A_{L \perp}^{*}\right)+\operatorname{Im}\left(A_{R 0} A_{R \perp}^{*}\right)\right] \\
I_{9} & =\beta_{l}^{2}\left[\operatorname{Im}\left(A_{L \|} A_{L \perp}^{*}\right)+\operatorname{Im}\left(A_{R \|} A_{R \perp}^{*}\right)\right]
\end{aligned}
$$

- $A_{R i}=\left.A_{L i}\right|_{C_{10} \rightarrow-C_{10}}$
- Up to one-loop matrix element and resonances taken out, only $C_{9}^{\text {eff }}$ contributes an imaginary part.
Without higher order QCD corrections

$$
I_{7}=0, I_{8} \text { and } I_{9} \text { is tiny }
$$

They could be chosen as the window to observe those effects that can change the behavior of the Wilson coefficients, such as NP effects.

BRs,fL

With the recent pQCD results for $\bar{B}^{0} \rightarrow K_{2}^{*}$ form factors
Branching ratios:

$$
\begin{aligned}
& \mathcal{B R}\left(B \rightarrow K_{2}^{*} \mu^{+} \mu^{+}\right)=\left(2.5_{-1.1}^{+1.6}\right) \times 10^{-7} \\
& \mathcal{B R}\left(B \rightarrow K_{2}^{*} \tau^{+} \tau^{-}\right)=\left(9.6_{-6.2}^{+6.2}\right) \times 10^{-10}
\end{aligned}
$$

Longitudinal Polarization fractions:

$$
f_{L} \equiv \frac{\Gamma_{0}}{\Gamma}=\frac{\int d q^{2} \frac{d \Gamma_{0}}{d q^{2}}}{\int d q^{2} \frac{d \Gamma}{d q^{2}}}
$$

$$
\begin{aligned}
f_{L}\left(B \rightarrow K_{2}^{*} \mu^{+} \mu^{-}\right) & =(66.6 \pm 0.4) \% \\
f_{L}\left(B \rightarrow K_{2}^{*} \tau^{+} \tau^{-}\right) & =(57.2 \pm 0.7) \%
\end{aligned}
$$

Estimate BRs from exp.

- Experimentally, we have

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B}^{0} \rightarrow K_{2}^{*} \gamma\right)=(12.4 \pm 2.4) \times 10^{-6}, \\
& \mathcal{B}\left(\bar{B}^{0} \rightarrow K^{*} \gamma\right)=(43.3 \pm 1.5) \times 10^{-6} . \\
& B\left(\bar{B}^{0} \rightarrow K^{*} l^{+} l^{-}\right)=(1.09 \pm 0.12) \times 10^{-6}
\end{aligned}
$$

- Assume $R=B\left(K_{2}^{*}\right) / B\left(K^{*}\right)$ is the same for radiative and semi-leptonic decays, we have

$$
\mathcal{B}_{\exp }\left(B^{0} \rightarrow K_{2}^{* 0} l^{+} l^{-}\right)=(3.1 \pm 0.7) \times 10^{-7}
$$

Compare with KC Yang, PRD79:114008,2009

$$
\mathcal{B}\left(B^{0} \rightarrow K_{2}^{* 0}(1430) \mu^{+} \mu^{-}\right)=\left(3.5_{-1.0-0.6}^{+1.1+0.7}\right) \times 10^{-7}
$$

D. Forward-backward asymmetry

The differential forward-backward asymmetry of $\bar{B} \rightarrow$ $\bar{K}_{2}^{*} l^{+} l^{-}$is defined by

$$
\frac{d A_{\mathrm{FB}}}{d q^{2}}=\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta_{l} \frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{l}}=\frac{3}{4} I_{6}
$$

- The forward backward asymmetry varies from positive to negative as q^{2} grows up
- The 0-cross point is
sensitive to new
physics

Forward and Backward Asymmetry

The zero-crossing point s_{0} of FBAs is determined by the equation

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
C_{9} A_{1}\left(s_{0}\right) V\left(s_{0}\right)+C_{7 L} \frac{m_{b}\left(m_{B}+m_{K_{2}^{*}}\right)}{s_{0}} A_{1}\left(s_{0}\right) T_{1}\left(s_{0}\right) \\
\\
+C_{7 L} \frac{m_{b}\left(m_{B}-m_{K_{2}^{*}}\right)}{s_{0}} T_{2}\left(s_{0}\right) V\left(s_{0}\right)=0 \\
s_{0}(B \rightarrow \\
2011 / 4 / 5
\end{array} K_{2}^{*} \mu^{+} \mu^{-}\right)=\left(3.49 \pm(0.04) \mathrm{GeV}^{2}\right. \\
& \text { Smaller uncertainty }
\end{aligned}
$$

Similarly for $B_{s} \rightarrow f_{2}^{\prime} l^{+} l^{-}$

$\mathcal{B}\left(B_{s} \rightarrow f_{2}^{\prime} \mu^{+} \mu^{-}\right)=\left(1.8_{-0.7}^{+1.1}\right) \times 10^{-7}$,
$f_{L}\left(B_{s} \rightarrow f_{2}^{\prime} \mu^{+} \mu^{-}\right)=(63.2 \pm 0.7) \%$,
$s_{0}\left(B_{s} \rightarrow f_{2}^{\prime} \mu^{+} \mu^{-}\right)=(3.53 \pm 0.03) \mathrm{GeV}^{2}$ $\mathcal{B}\left(B_{s} \rightarrow f_{2}^{\prime} \tau^{+} \tau^{-}\right)=\left(5.8_{-2.1}^{+3.7}\right) \times 10^{-10}$, $f_{L}\left(B_{s} \rightarrow f_{2}^{\prime} \tau^{+} \tau^{-}\right)=(53.9 \pm 0.4) \%$.

NP scenario: Vector-like quark model (VQM)

Expanding SM including a $S U(2)_{\llcorner }$singlet down type quark, Yukawa sector of SM is modified to

$$
\mathcal{L}_{Y}=\bar{Q}_{L} Y_{D} H d_{R}+h_{D} \bar{Q}_{L} H D_{R}+m_{D} \bar{D}_{L} D_{R}+h . c .
$$

This modification brings FCNC for the mass eigenstates at tree level.
The interaction for $b-s-Z$ in VQM is

$$
\mathcal{L}_{b \rightarrow s}=\frac{g c_{L}^{s} \lambda_{s b}}{\cos \theta_{W}} \bar{s} \gamma^{\mu} P_{L} b Z_{\mu}+h . c .
$$

free parameter

$$
\lambda_{s b}=\left|\lambda_{s b}\right| \exp \left(i \theta_{s}\right)
$$

with which the effective Hamiltonian for $b \rightarrow s l^{+} l^{-}$ is given as

$$
\mathcal{H}_{b \rightarrow s l^{+} l^{-}}^{Z}=\frac{2 G_{F}}{\sqrt{2}} \lambda_{s b} c_{L}^{s}(\bar{s} b)_{V-A}\left[c_{L}^{\ell}(\bar{\ell})_{V-A}+c_{R}^{\ell}(\bar{\ell} \ell)_{V+A}\right]
$$

NP scenario: Vector-like quark model (VQM)

The VQM effects can be absorbed into the Wilson coefficients C_{9} and C_{10}

$$
\begin{aligned}
& C_{9}^{\mathrm{VLQ}}=C_{9}^{\mathrm{SM}}-\frac{4 \pi}{\alpha_{\mathrm{em}}} \frac{\lambda_{s b} c_{L}^{s}\left(c_{L}^{\ell}+c_{R}^{\ell}\right)}{V_{t S}^{*} t_{t b}}, \\
& C_{10}^{\mathrm{VLQ}}=C_{10}^{\mathrm{SM}}+\frac{4 \pi}{\alpha_{\mathrm{em}}} \frac{\lambda_{s b}^{s} c_{L}^{s}\left(c_{L}^{\ell}-c_{R}^{\ell}\right)}{V_{t s}^{*} V_{t b}} .
\end{aligned}
$$

Lepton section in VQM is the same as in SM.

NP scenario: Family non-universal Z' model

 Expand $S M$ by simply including an additional $U(1)^{\prime}$ symmetry. The current is$$
J_{Z^{\prime}}^{\mu}=g^{\prime} \sum_{i} \bar{\psi}_{i} \gamma^{\mu}\left[\epsilon_{i}^{\psi_{L}} P_{L}+\epsilon_{i}^{\psi_{R}} P_{R}\right] \psi_{i}
$$

which couples to a family non-universal Z^{\prime} boson.
After rotating to the mass eigen basis, FCNC appears at tree level in both LH and RH section.

Interaction for $b-s-Z^{\prime}$ is given as

$$
\mathcal{L}_{\mathrm{FCNC}}^{Z^{\prime}}=-g^{\prime}\left(B_{s b}^{L} \bar{s}_{L} \gamma_{\mu} b_{L}+B_{s b}^{R} \bar{s}_{R} \gamma_{\mu} b_{R}\right) Z^{\prime \mu}+\text { h.c. }
$$

The effective Hamiltonian for $b \rightarrow s l^{+} l^{-}$is given as

$$
\mathcal{H}_{\mathrm{eff}}^{Z^{\prime}}=\frac{8 G_{F}}{\sqrt{2}}\left(\rho_{s b}^{L} \bar{s}_{L} \gamma_{\mu} b_{L}+\rho_{s b}^{R} \bar{s}_{R} \gamma_{\mu} b_{R}\right)\left(\rho_{l l}^{L} \bar{\ell}_{L} \gamma^{\mu} \ell_{L}+\rho_{l l}^{R} \bar{e}_{R} \gamma^{\mu} \ell_{R}\right)
$$

NP scenario: Family non-universal Z'model

Different from VQM, the couplings in both the quark and lepton section are free parameters.

Too many free parameters. So we set $\rho_{s b}^{R}=0$ in our analysis to reduce freedoms.
Z ' also only affects C_{9} and C_{10} phenomenally:

$$
C_{9}^{Z}=C_{9}-\frac{4 \pi}{\alpha e m} \frac{\rho_{s b}^{L}\left(\rho_{l}^{L}+\rho_{l l}^{R}\right)}{V_{t b} V_{t s}^{*}}, \quad C_{10}^{Z \prime}=C_{10}+\frac{4 \pi}{\alpha e m} \frac{\rho_{s b}^{L}\left(\rho_{l l}^{L}-\rho_{l l}^{R}\right)}{V_{t b} V_{t s}^{*}}
$$

Constrain the model parameters by exp.

Data used for fitting

$\left.\left.\begin{array}{c|ccc}\begin{array}{c}b \rightarrow c l \bar{\nu}\end{array} & \begin{array}{c}b \rightarrow s l^{+} l^{-}\end{array} & \begin{array}{c}\bar{B}^{0} \rightarrow K^{*} l^{+} l^{-}\end{array} & \\ (10.58 \pm 0.15) \times 10^{-2} & \left(3.66_{-0.77}^{+0.76}\right) \times 10^{-6}\end{array} \begin{array}{cccc}\left(1.09_{-0.11}^{+0.12}\right) \times 10^{-6}\end{array}\right]-F_{L}\right)$

Heavy Flavor Averaging Group, arXiv:1010.1589; Particle Data Group, J. Phys. G 37,075021.

Definition of χ^{2}

2011/4/5

$$
\chi_{i}^{2}=\frac{\left(B_{i}^{\text {the }}-B_{i}^{e x p}\right)^{2}}{\left(B_{i}^{e r r}\right)^{2}}
$$

Constrain the VQM parameters

$$
\left.\begin{array}{rl}
\operatorname{Re} \lambda_{s b}= & (0.07 \pm 0.04) \times 10^{-3} \\
\operatorname{Im} \lambda_{s b}= & (0.09 \pm 0.23) \times 10^{-3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\left|\lambda_{s b}\right|<0.3 \times 10^{-3} \\
\text { Phase less constrained }
\end{array}\right.
$$

Constrains on the Wilson coefficients

$$
\text { with } \chi^{2} / \text { d.o.f. }=2.4
$$

$$
\begin{array}{r}
\left|\Delta C_{9}\right|=\left|C_{9}-C_{9}^{S M}\right|<0.2 \\
\left|\Delta C_{10}\right|=\left|C_{10}-C_{10}^{S M}\right|<2.8
\end{array}
$$

Constrain the Z' model parameters

Assume $\Delta C_{9}, \Delta C_{10}$ as real
$\Delta C_{9}=0.88 \pm 0.75, \quad \Delta C_{10}=0.01 \pm 0.69$
Both ΔC_{9} and ΔC_{10} are complex numbers.

$$
\begin{gathered}
\text { with } \chi^{2} / \text { d.o.f. }=2.3 \\
\Delta C_{9}=(-0.81 \pm 1.22)+(3.05 \pm 0.92) i \\
\Delta C_{10}=(1.00 \pm 1.28)+(-3.16 \pm 0.94) i \\
\quad \operatorname{Im}\left[C_{10}\right] \text { has little effect on } \chi^{2}
\end{gathered}
$$

Combining the above results $\left|\Delta C_{9}\right|<3, \quad\left|\Delta C_{10}\right|<3$

New Physics effects in observables

In the NP effects, we choose $\Delta C_{9}=3 e^{i \pi / 4, i 3 \pi / 4}$ and $\Delta C_{10}=3 e^{i \pi / 4, i 3 \pi / 4}$ as the reference points.

$\mathrm{Br}\left(10^{-7}\right)$ may be enhanced, however, large uncertainties

In this parameter space, $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$is consistent with the recent measurement. $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<5.1 \times 10^{-8}$

D0 collaboration, PLB 693,539.

New Physics effects in observable $\frac{\overline{d A_{F B}}}{d q^{2}}$

Zerocrossing point of AFB may be changed significan tly in new physics model.

Polarization fraction f_{L}

some changes of Polarizati on fraction f_{L} in new physics model.

Summary

- $\bar{B}^{0} \rightarrow K_{2}^{*}(\rightarrow K \pi) l^{+} l^{-}$is investigated in SM.
- $\mathcal{B}\left(B \rightarrow K_{2}^{*} \mu^{+} \mu^{-}\right)=\left(2.5_{-1.1}^{+1.6}\right) \times 10^{-7}$
- expected to be observed in future Exp.

FBA, polarization fractions, etc, are investigated, with small uncertainties.

- Two NP scenarios (VQM, Z' model) are investigated.

Parameter space constrained with data of $\bar{B}^{0} \rightarrow K^{*} l^{+} l^{-}$ and $b \rightarrow s l^{+} l^{-}$.

Zero-crossing point of FBA can be changed dramatically, which are sensitive to NP effects

Thank you

