Search for new physics from $B \rightarrow K_2^* (\rightarrow K\pi) l^+ l^ B_s \rightarrow f_2(\rightarrow KK) l^+ l^-$ decays

Cai-Dian Lü (吕才典) IHEP - 中国科学院高能物理研究所

Based on collaboration with R.H. Li (李润辉), and W. Wang(王伟), arXiv: 1012.2129, PRD83, 034034 (2011)

outline

Introduction

• $B \to K_2^* (\to K\pi) l^+ l^-$ in SM

Angular distribution

BR, FBA, fL.

$$(B_s \rightarrow f_2^{\prime} l^+ l^-)$$

Two New Physics scenarios

- Brief introduction
- Parameters obtained by fitting
- Effect on the SM results

Summary

2011/4/5

Flavor changing Electroweak penguin operators

$$O_{10} = \frac{\alpha_{\rm em}}{2\pi} (\bar{l}\gamma_{\mu}\gamma_5 l) (\bar{s}\gamma^{\mu}(1-\gamma_5)b)$$

No tree level flavor changing neutral current in SM

With QCD corrections from the four quark operators b $H_{eff} = \frac{G_F}{\sqrt{2}} V_{CKM} \sum_i C_i O_i$ $O_1 = \overline{u\gamma}^{\mu}Lu \cdot \overline{s\gamma}_{\mu}Lb$ $O_2 = \bar{s} \gamma^{\mu} L u \cdot u \gamma_{\mu} L b$ $O_4 = \bar{s}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum \bar{q}_{\beta} \gamma_{\mu} L q_{\alpha}$ $O_3 = \bar{s} \gamma^{\mu} L b \cdot \sum \bar{q} \gamma_{\mu} L q$ $O_6 = \overline{s}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{\alpha} \overline{q}_{\beta} \gamma_{\mu} R q_{\alpha}$ $O_5 = \bar{s}\gamma^{\mu}Lb \cdot \sum \bar{q}\gamma_{\mu}Rq$ CD Lu

Introduction

• Unlike $b \rightarrow s \gamma$ or $B \rightarrow K^* \gamma$, which have only limited physical observables

• $b \rightarrow s l^+l^-$, and especially $B \rightarrow K^* l^+l^-$, with a number of observables accessible (exp. also easier), provides a wealth of information of weak interactions, ranging from the forward-backward asymmetries, isospin asymmetries, and polarization fractions

About	• K ₂ *(1430)	and	d f ₂ '(1525)
Г=	10	OMeV	,	73 MeV 0
	•Κ π			$\rightarrow K K$
l s	J	$^{2s+1}L_J$	J^{PC}	Meson
$\boxed{l=0} s=0$	J = 0	${}^{1}S_{0}$	0^{-+}	Pseudoscalar (P)
$\overline{s} = 1$	J = 1	${}^{3}S_{1}$	1	Vector (V)
हिंह $s=0$	J = 1	${}^{1}P_{1}$	1+-	Axial-vector $(A({}^{1}P_{1}))$
l=1	J = 0	${}^{3}P_{0}$	0^{++}	Scalar (S)
家	J = 1	$^{3}P_{1}$	1++	Axial-vector $(A({}^{3}P_{1}))$
	J=2	${}^{3}P_{2}$	2^{++}	Tensor (T)

$B \to K_2^* l^+ l^- (B_s \to f_2^{\prime} l^+ l^-)$

- 5 polarization states: Jz= -2, -1, 0, 1, 2<</p>
- 3 contribute to $\overline{B}^0 \rightarrow K_2^* l^+ l^-$, Jz=-1, 0, 1, because of angular momentum conservation

- Similar to K* mesons. $\bar{B}^0 \rightarrow K_2^* l^+ l^$
 - formulism can be got by some
- substitution in $\bar{B}^0 \rightarrow K^* l^+ l^-$ formulism
 - in pQCD approach.

Form factors needed for the exclusive decays

• Definition similar to the $B \rightarrow K^*$ case

$$\langle K_2^*(P_2,\epsilon)|\bar{s}\gamma^{\mu}b|\bar{B}(P_B)\rangle = -\frac{2V(q^2)}{m_B + m_{K_2^*}}\epsilon^{\mu\nu\rho\sigma}\epsilon^*_{T\nu}P_{B\rho}P_{2\sigma},$$

$$\langle K_2^*(P_2, \epsilon) | \bar{s} \gamma^{\mu} \gamma_5 b | \bar{B}(P_B) \rangle = 2im_{K_2^*} A_0(q^2) \frac{\epsilon_T^* \cdot q}{q^2} q^{\mu} + i(m_B + m_{K_2^*}) A_1(q^2) \bigg[\epsilon_{T\mu}^* - \frac{\epsilon_T^* \cdot q}{q^2} q^{\mu} \bigg]$$
$$- iA_2(q^2) \frac{\epsilon_T^* \cdot q}{m_B + m_{K_2^*}} \bigg[P^{\mu} - \frac{m_B^2 - m_{K_2^*}^2}{q^2} q^{\mu} \bigg],$$

 $\langle K_2^*(P_2,\epsilon)|\bar{s}\sigma^{\mu\nu}q_{\nu}b|\bar{B}(P_B)\rangle = -2iT_1(q^2)\epsilon^{\mu\nu\rho\sigma}\epsilon_{T\nu}^*P_{B\rho}P_{2\sigma},$

 $\langle K_{2}^{*}(P_{2},\epsilon)|\bar{s}\sigma^{\mu\nu}\gamma_{5}q_{\nu}b|\bar{B}(P_{B})\rangle = T_{2}(q^{2})[(m_{B}^{2}-m_{K_{2}^{*}}^{2})\epsilon_{T\mu}^{*}-\epsilon_{T}^{*}\cdot qP^{\mu}] + T_{3}(q^{2})\epsilon_{T}^{*}\cdot q\left[q^{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K_{2}^{*}}^{2}}P^{\mu}\right]$ Non-perturbative variables, difficult to calculate in QCD

Form factors calculated in pQCD to leading order of 1/m_b

F	F(0)	а	b
$V^{BK_2^*}$	$0.21^{+0.04+0.05}_{-0.04-0.03}$	$1.73\substack{+0.02+0.05\\-0.02-0.03}$	$0.66^{+0.04+0.07}_{-0.05-0.01}$
$A_0^{BK_2^*}$	$0.18^{+0.04+0.04}_{-0.03-0.03}$	$1.70\substack{+0.00+0.05\\-0.02-0.07}$	$0.64^{+0.00+0.04}_{-0.06-0.10}$
$A_1^{BK_2^*}$	$0.13^{+0.03+0.03}_{-0.02-0.02}$	$0.78\substack{+0.01+0.05\\-0.01-0.04}$	$-0.11^{+0.02+0.04}_{-0.03-0.02}$
$A_2^{BK_2^*}$	$0.08^{+0.02+0.02}_{-0.02-0.01}$		
$T_{1}^{BK_{2}^{*}}$	$0.17^{+0.04+0.04}_{-0.03-0.03}$	$1.73\substack{+0.00+0.05\\-0.03-0.07}$	$0.69^{+0.00+0.05}_{-0.08-0.11}$
$T_{2}^{BK_{2}^{*}}$	$0.17^{+0.03+0.04}_{-0.03-0.03}$	$0.79^{+0.00+0.02}_{-0.04-0.09}$	$-0.06^{+0.00+0.00}_{-0.10-0.16}$
$T_{3}^{BK_{2}^{*}}$	$0.14^{+0.03}_{-0.03}^{+0.03}_{-0.02}$	$1.61\substack{+0.01+0.09\\-0.00-0.04}$	$0.52^{+0.05+0.15}_{-0.01-0.01}$
$V^{B_s f_2'}$	$0.20^{+0.04+0.05}_{-0.03-0.03}$	$1.75\substack{+0.02+0.05\\-0.00-0.03}$	$0.69^{+0.05+0.08}_{-0.01-0.01}$
$A_0^{B_s f_2'}$	$0.16^{+0.03+0.03}_{-0.02-0.02}$	$1.69^{+0.00+0.04}_{-0.01-0.03}$	$0.64^{+0.00+0.01}_{-0.04-0.02}$
$A_1^{B_s f_2'}$	$0.12^{+0.02+0.03}_{-0.02-0.02}$	$0.80^{+0.02+0.07}_{-0.00-0.03}$	$-0.11^{+0.05+0.09}_{-0.00-0.00}$
$A_2^{B_s f_2}$	$0.09^{+0.02+0.02}_{-0.01-0.01}$		
$T_1^{B_s f_2'}$	$0.16^{+0.03+0.04}_{-0.03-0.02}$	$1.75^{+0.01+0.05}_{-0.00-0.05}$	$0.71^{+0.03+0.06}_{-0.01-0.08}$
$T_2^{B_s f_2'}$	$0.16^{+0.03+0.04}_{-0.03-0.02}$	$0.82^{+0.00+0.04}_{-0.04-0.06}$	$-0.08^{+0.00+0.03}_{-0.09-0.08}$
$T_3^{B_s f_2'}$	$0.13^{+0.03}_{-0.02}{}^{+0.03}_{-0.02}$	$1.64^{+0.02+0.06}_{-0.00-0.06}$	$0.57^{+0.04+0.05}_{-0.01-0.09}$
011/4/5		W. Wang, PRD83,	014008

Branching ratios are proportional to form factors, have large uncertainties, but Angular distribution is not 0 Partial decay width \overline{B} *d*⁴ſ $\frac{3}{8}|\mathcal{M}_B|^2$ $\overline{dq^2d\cos\theta_Kd\cos\theta_l}d\phi$ $|\mathcal{M}_B|^2$ is decomposed into 11 terms $|\mathcal{M}_B|^2 = [I_1^c C^2 + 2I_1^s S^2 + (I_2^c C^2 + 2I_2^s S^2) \cos(2\theta_l)]$ $+2I_3S^2\sin^2\theta_l\cos(2\phi)+2\sqrt{2}I_4CS\sin(2\theta_l)\cos\phi$ $+2\sqrt{2}I_5CS\sin(\theta_l)\cos\phi + 2I_6S^2\cos\theta_l$ $+2\sqrt{2}I_7CS\sin(\theta_l)\sin\phi + 2\sqrt{2}I_8CS\sin(2\theta_l)\sin\phi$ $+2I_9S^2\sin^2\theta_l\sin(2\phi)$] 2011/4/5

Angular distribution

 $I_7 = \sqrt{2}\beta_l [\text{Im}(A_{L0}A_{L||}^*) - \text{Im}(A_{R0}A_{R||}^*)]$

$$I_8 = \frac{1}{\sqrt{2}} \beta_l^2 [\text{Im}(A_{L0}A_{L\perp}^*) + \text{Im}(A_{R0}A_{R\perp}^*)]$$

 $I_9 = \beta_l^2 [\text{Im}(A_{L||}A_{L\perp}^*) + \text{Im}(A_{R||}A_{R\perp}^*)]$

•
$$A_{Ri} = A_{Li}|_{C_{10} \to -C_{10}}$$

 Up to one-loop matrix element and resonances taken out, only C₉^{eff} contributes an imaginary part.

Without higher order QCD corrections

 $I_7 = 0$, I_8 and I_9 is tiny

They could be chosen as the window to observe those effects that can change the behavior of the Wilson coefficients, such as NP effects.

BRs, fL

With the recent pQCD results for $\bar{B}^0 \rightarrow K_2^*$ form factors

Branching ratios: $\mathcal{BR}(B \to K_2^* \mu^+ \mu^-) = (2.5^{+1.6}_{-1.1}) \times 10^{-7},$ $\mathcal{BR}(B \to K_2^* \tau^+ \tau^-) = (9.6^{+6.2}_{-4.5}) \times 10^{-10}.$

Longitudinal Polarization fractions: $f_L \equiv \frac{\Gamma_0}{\Gamma} = \frac{\int dq^2 \frac{d\Gamma_0}{dq^2}}{\int dq^2 \frac{d\Gamma}{dq^2}}$ $f_L(B \to K_2^* \mu^+ \mu^-) = (66.6 \pm 0.4)\%,$ $f_L(B \to K_2^* \tau^+ \tau^-) = (57.2 \pm 0.7)\%$

Estimate BRs from exp. Experimentally, we have $\mathcal{B}(\bar{B}^0 \to K_2^* \gamma) = (12.4 \pm 2.4) \times 10^{-6},$ $\mathcal{B}(\bar{B}^0 \to K^* \gamma) = (43.3 \pm 1.5) \times 10^{-6}.$ $B(\overline{B}^0 \to K^* l^+ l^-) = (1.09 \pm 0.12) \times 10^{-6}$ Assume $R = B(K_2^*) / B(K^*)$ is the same for radiative and semi-leptonic decays, we have $\mathcal{B}_{exp}(B^0 \to K_2^{*0} l^+ l^-) = (3.1 \pm 0.7) \times 10^{-7}$ Compare with KC Yang, PRD79:114008,2009 $\mathcal{B}(B^0 \to K_2^{*0}(1430)\mu^+\mu^-) = (3.5^{+1.1+0.7}_{-1.0-0.6}) \times 10^{-7}$ 14

D. Forward-backward asymmetry

The differential forward-backward asymmetry of $\bar{B} \rightarrow \bar{K}_{2}^{*}l^{+}l^{-}$ is defined by

$$\frac{dA_{\rm FB}}{dq^2} = \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} = \frac{3}{4}I_6$$

• The forward backward asymmetry varies from positive to negative as q² grows up

• The 0-cross point is sensitive to new
$$\int_{\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}$$

2

3

 $q^2(\text{GeV}^2)$

5

15

Forward and Backward Asymmetry

 $\frac{dA_{FB}}{dq^2} = \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l}$

The zero-crossing point s_0 of FBAs is determined by the equation $m_1(m_2 \pm m_{-1})$

$$C_{9}A_{1}(s_{0})V(s_{0}) + C_{7L}\frac{m_{b}(m_{B} + m_{K_{2}^{*}})}{s_{0}}A_{1}(s_{0})T_{1}(s_{0})$$

$$+C_{7L}\frac{m_{b}(m_{B} - m_{K_{2}^{*}})}{s_{0}}T_{2}(s_{0})V(s_{0}) = 0$$

$$s_{0}(B \to K_{2}^{*}\mu^{+}\mu^{-}) = (3.49 \pm 0.04) \text{ GeV}^{2}$$
Smaller uncertainty

Similarly for $B_s \rightarrow f_2$, $l^+l^ \mathcal{B}(B_s \to f_2' \mu^+ \mu^-) = (1.8^{+1.1}_{-0.7}) \times 10^{-7},$ $f_L(B_s \to f'_2 \mu^+ \mu^-) = (63.2 \pm 0.7)\%,$ $s_0(B_s \to f_2' \mu^+ \mu^-) = (3.53 \pm 0.03) \text{ GeV}^2$ $\mathcal{B}(B_s \to f'_2 \tau^+ \tau^-) = (5.8^{+3.7}_{-2.1}) \times 10^{-10},$ $f_L(B_s \to f'_2 \tau^+ \tau^-) = (53.9 \pm 0.4)\%.$

NP scenario: Vector-like quark model (VQM)

Expanding SM including a SU(2)_L singlet down type quark, Yukawa sector of SM is modified to

 $\mathcal{L}_Y = \bar{Q}_L Y_D H d_R + h_D \bar{Q}_L H D_R + m_D \bar{D}_L D_R + h.c.$

This modification brings FCNC for the mass eigenstates at tree level.

The interaction for b-s-Z in VQM is

 $\mathcal{L}_{b \to s} = \frac{g c_L^s \lambda_{sb}}{\cos \theta_W} \bar{s} \gamma^\mu P_L b Z_\mu + h.c.,$

free parameter $\lambda_{sb} = |\lambda_{sb}| \exp(i\theta_s)$

with which the effective Hamiltonian for $b \rightarrow s l^+ l^-$ is given as

$$\mathcal{H}_{b\to sl^+l^-}^Z = \frac{2G_F}{\sqrt{2}} \lambda_{sb} c_L^s (\bar{s}b)_{V-A} \left[c_L^\ell (\bar{\ell}\ell)_{V-A} + c_R^\ell (\bar{\ell}\ell)_{V+A} \right]$$

NP scenario: Vector-like quark model (VQM)

The VQM effects can be absorbed into the Wilson coefficients C_9 and C_{10}

NP scenario: Family non-universal Z' model Expand SM by simply including an additional U(1)' symmetry. The current is

$$J_{Z'}^{\mu} = g' \sum_{i} \bar{\psi}_{i} \gamma^{\mu} [\epsilon_{i}^{\psi_{L}} P_{L} + \epsilon_{i}^{\psi_{R}} P_{R}] \psi_{i} ,$$

which couples to a family non-universal Z' boson. After rotating to the mass eigen basis, FCNC appears at tree level in both LH and RH section.

Interaction for b-s-Z' is given as

$$\mathcal{L}_{\mathsf{FCNC}}^{Z'} = -g'(B_{sb}^L \bar{s}_L \gamma_\mu b_L + B_{sb}^R \bar{s}_R \gamma_\mu b_R) Z'^\mu + \mathsf{h.c.}$$

The effective Hamiltonian for $b \to sl^+l^-$ is given as $\mathcal{H}_{eff}^{Z'} = \frac{8G_F}{\sqrt{2}} (\rho_{sb}^L \bar{s}_L \gamma_\mu b_L + \rho_{sb}^R \bar{s}_R \gamma_\mu b_R) (\rho_{ll}^L \bar{\ell}_L \gamma^\mu \ell_L + \rho_{ll}^R \bar{\ell}_R \gamma^\mu \ell_R)$

NP scenario: Family non-universal Z' model

Different from VQM, the couplings in both the quark and lepton section are free parameters.

Too many free parameters. So we set $\rho^R_{sb}=0$ in our analysis to reduce freedoms.

Constrain the model parameters by exp.

Data use	ed for fitting		
$b ightarrow c l ar{ u}$	$b \rightarrow s l^+ l^-$	$\overline{B}^0 \to K^* l^+ l^-$	
$(10.58 \pm 0.15) \times 1$	0^{-2} $(3.66^{+0.76}_{-0.77}) \times 10^{-6}$	$(1.09^{+0.12}_{-0.11}) \times 10^{-6}$	
$q^2({ m GeV}^2)$	${\cal B}(10^{-7})$	F_L	$-A_{FB}$
[0,2]	1.46 ± 0.41	0.29 ± 0.21	0.47 ± 0.32
[2, 4.3]	0.86 ± 0.32	0.71 ± 0.25	0.11 ± 0.37
[4.3, 8.68]	1.37 ± 0.61	0.64 ± 0.25	0.45 ± 0.26
[10.09, 12.86]	2.24 ± 0.48	0.17 ± 0.17	0.43 ± 0.20
[14.18, 16]	1.05 ± 0.30	-0.15 ± 0.28	0.70 ± 0.24
> 16	2.04 ± 0.31	0.12 ± 0.15	0.66 ± 0.16
[1,6]	1.49 ± 0.47	0.67 ± 0.24	0.26 ± 0.31
	Heavy Flavor Averagin	g Group, arXiv:10)10.1589;
大田愛	Particle Data Group, J.	Phys. G 37,0750)21.
Definition) of χ^2	$\chi_i^2 = \frac{(B_i^{the} - B_i^2)}{(E_i^{orm})}$	$\frac{exp}{2}$) ²
2011/4/5		(B_i^{err})	22

Constrain the VQM parameters $\operatorname{Re}\lambda_{sb}$ = (0.07 ± 0.04) × 10⁻³] \Longrightarrow $\text{Im}\lambda_{sb} = (0.09 \pm 0.23) \times 10^{-3}$ $|\lambda_{sb}| < 0.3 imes 10^{-3}$ Phase less constrained Constrains on the Wilson coefficients with $\chi^2/d.o.f. = 2.4$ $|\Delta C_9| = |C_9 - C_9^{SM}| < 0.2$ $|\Delta C_{10}| = |C_{10} - C_{10}^{SM}| < 2.8$

Constrain the Z' model parameters

Assume ΔC_9 , ΔC_{10} as real $\Delta C_9 = 0.88 \pm 0.75, \quad \Delta C_{10} = 0.01 \pm 0.69$

Both ΔC_9 and ΔC_{10} are complex numbers.

In this parameter space, $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is consistent with the recent measurement. $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.1 \times 10^{-8}$

2011/4/5

$\frac{\overline{dA_{FB}}}{dq^2}$ New Physics effects in observable Zero-0.2SM crossing 0.1 C_9 point of C_{10} 0.0AFB may be -0.1changed -0.2significan tly in new -0.3physics model. $\mathbf{2}$ 101214 **O** 6 $q^2(\text{GeV}^2)$

Summary

- $\overline{B}^0 \to K_2^*(\to K\pi)l^+l^-$ is investigated in SM.
 - * $\mathcal{B}(B \to K_2^* \mu^+ \mu^-) = (2.5^{+1.6}_{-1.1}) \times 10^{-7}$

expected to be observed in future Exp.

FBA, polarization fractions, etc, are investigated, with small uncertainties.

Two NP scenarios (VQM, Z' model) are investigated.

Parameter space constrained with data of $\bar{B}^0 \to K^* l^+ l^-$ and $b \to s l^+ l^-$.

Zero-crossing point of FBA can be changed dramatically, which are sensitive to NP effects

Thank you