# $B \rightarrow K_1 \ell \ell$ in the SM and Beyond

# Kwei-Chou Yang (楊桂周) Chung-Yuan Christian University, Taiwan

2011 Cross Strait Meeting on Particle Physics and Cosmology

#### Refs:

PRD78:074007(2008) with H. Hatanaka

PRD77:094023(2008) with H. Hatanaka

Eur.Phys.J.C67:149(2010) with H. Hatanaka

Phys.Rev.D78:034018,2008

arXiv:1011.4661 with T.M. Aliev, M. Savci



#### Outline



• the  $K_{1A}$ - $K_{1B}$  mixing angle,  $\theta_{K_1}$ 

• Results from SM and determination of  $\theta_{K_1}$ 

Results for new physics

♦ Conclusion

In SM, flavor-changing neutral current (FCNC) transitions,  $b \rightarrow s(d) \ell \ell$ , are forbidden at the tree level



In SM, the  $b \rightarrow s \ell^+ \ell^-$  decay amplitude is given by  $\mathcal{M}(b \to s\ell^+\ell^-) = \frac{G_F}{\sqrt{2}} \frac{\alpha_{\rm em}}{\pi} V_{ts}^* V_{tb} \bigg\{ c_9^{\rm eff}(\hat{s}) [\bar{s}\gamma_\mu Lb] [\bar{\ell}\gamma^\mu \ell] + c_{10} [\bar{s}\gamma_\mu Lb] [\bar{\ell}\gamma^\mu \gamma_5 \ell] \bigg\}$  $-2\hat{m}_b c_7^{\text{eff}} \left[ \bar{s} i \sigma_{\mu\nu} \frac{\hat{q}^{\nu}}{\hat{s}} R b \right] \left[ \bar{\ell} \gamma^{\mu} \ell \right] \bigg\},$ Dominant contributions are mainly from 👫 magnetic dipole operator  $O_7$ vector current operator  $0_9$  $\clubsuit$  axial-vector current operator  $O_{10}$  $|c_7^{eff}|$  is constrained by  $\mathcal{B}(B \to X_s \gamma)$  data



### SUSY phenomenology can enter at same order as SM contributions



Large  $\tan \beta = \frac{v_u}{v_d} \ge 30, \dots \implies \text{sign flip in } c_7^{eff}$ 

6

#### Decays involving $K_1(1270)$ and/or $K_1(1400)$





**Belle** 

# Axial-vector mesons



For J<sup>P</sup>=1<sup>+</sup> light axial-vector mesons, two nonets have been observed:

<sup>3</sup>P<sub>1</sub> nonet (S=1)

I=0: f<sub>1</sub>(1285), f<sub>1</sub>(1420), I=1/2: K<sub>1A</sub>, I=1: a<sub>1</sub>(1260),

<sup>1</sup>P<sub>1</sub> nonet (S=0)

I=0: h<sub>1</sub>(1170), h<sub>1</sub>(1380), I=1/2: K<sub>1B</sub> , I=1: b<sub>1</sub>(1235)

 $K_{1A}, K_{1B} \rightarrow K_{1}(1270), K_{1}(1400)$ 

# Mixing angles



■ <sup>3</sup> $P_1$  states  $f_1(1285)$  &  $f_1(1420)$  have mixing [so are <sup>1</sup> $P_1$  states  $h_1(1170)$  &  $h_1(1380)$  ]

 $|f_1(1285)\rangle = |f_1\rangle \cos\theta_{^3P_1} + |f_8\rangle \sin\theta_{^3P_1}, \quad |f_1(1420)\rangle = -|f_1\rangle \sin\theta_{^3P_1} + |f_8\rangle \cos\theta_{^3P_1}.$ 

Using the Gell-Mann-Okubo mass formula



 $\theta_{3P1}$  &  $\theta_{1P1}$  depend on the  $K_{1A}$ - $K_{1B}$  mixing angle

■ In SU(3) limit, K<sub>1A</sub> & K<sub>1B</sub> do not get mixed. However, they have admixture due to strange and light quark mass difference

 $\begin{aligned} |\bar{K}_1(1270)\rangle &= |\bar{K}_{1A}\rangle \sin\theta_{K_1} + |\bar{K}_{1B}\rangle \cos\theta_{K_1} \\ |\bar{K}_1(1400)\rangle &= |\bar{K}_{1A}\rangle \cos\theta_{K_1} - |\bar{K}_{1B}\rangle \sin\theta_{K_1} \end{aligned}$ 

 PDG ⇒ |θ<sub>K</sub>| ≈ 45°
 Strong decays K<sub>1</sub>(1270), K<sub>1</sub>(1400)→ K<sub>P</sub>,K\*π and their masses ⇒ θ<sub>K</sub>= ±33°,±57° τ→ K<sub>1</sub>(1270)ν<sub>τ</sub>,K<sub>1</sub>(1400)ν<sub>τ</sub>⇒ θ<sub>K</sub>= ±37°, ± 58° (HYC,'03)

Belle

**ALEPH** 

#### From

 $Br(B^+ \to K_1^+(1270)\gamma) = (4.3 \pm 0.9 \pm 0.9) \times 10^{-5}$  $Br(B^+ \to K_1^+(1400)\gamma) < 1.5 \times 10^{-5}$ 

 $Br(\mathcal{T}^+ \to K_1^+(1270)\nu) = (4.7 \pm 1.1) \times 10^{-5}$ 

 $\Rightarrow \theta_{K}$ = -(34± 13)°, H. Hatanaka & KCY, Phys.Rev.D77:094023,2008

### For axial-vector mesons: Decay constants

 $\langle 3P_{1}(p,\varepsilon) | \overline{q} \gamma_{\mu} \gamma_{5} q' | 0 \rangle = i f_{3P_{1}} m_{3P_{1}} \varepsilon_{\mu}^{*}, \qquad \langle 1P_{1}(p,\varepsilon) | \overline{q} \sigma_{\mu\nu} \gamma_{5} q' | 0 \rangle = f_{1P_{1}}^{\perp} (\varepsilon_{\mu}^{*} p_{\nu} - \varepsilon_{\nu}^{*} p_{\mu})$ 

scale dependent

| $^{3}P_{1}$       | $a_1(1260)$ | $f_1$      | $f_8$      | $K_{1A}$   |
|-------------------|-------------|------------|------------|------------|
| $f_{^3P_1}$       | $238\pm10$  | $245\pm13$ | $239\pm13$ | $250\pm13$ |
| $^{1}P_{1}$       | $b_1(1235)$ | $h_1$      | $h_8$      | $K_{1B}$   |
| $f_{^1P_1}^\perp$ | $180\pm 8$  | $180\pm12$ | $190\pm10$ | $190\pm10$ |

QCDSR by KCY, '07

#### Form factors for $B \rightarrow A$

$$\begin{split} \langle A(p,\lambda) | A_{\mu} | \overline{B_{q}}(p_{B}) \rangle &= i \frac{2}{m_{B_{q}} - m_{A}} \varepsilon_{\mu\nu\alpha\beta} \epsilon_{(\lambda)}^{*\nu} p_{B}^{\alpha} p^{\beta} A^{B_{q}A}(q^{2}), \\ \langle A(p,\lambda) | V_{\mu} | \overline{B}_{q}(p_{B}) \rangle &= - \bigg\{ (m_{B_{q}} - m_{A}) \epsilon_{\mu}^{(\lambda)*} V_{1}^{B_{q}A}(q^{2}) - (\epsilon^{(\lambda)*} \cdot p_{B})(p_{B} + p)_{\mu} \frac{V_{2}^{B_{q}A}(q^{2})}{m_{B_{q}} - m_{A}} \\ &- 2m_{A} \frac{\epsilon^{(\lambda)*} \cdot p_{B}}{q^{2}} q^{\mu} \left[ V_{3}^{B_{q}A}(q^{2}) - V_{0}^{B_{q}A}(q^{2}) \right] \bigg\}, \end{split}$$

By light cone sum rules (KCY,PRD78:034018,2008)



The effects of charmonium resonances become large for  $s \ge 5 \text{ GeV}^2$ .

In the low s region,  $s \approx 2 \text{ GeV}^2$ , the differential decay rate for  $B \rightarrow K_1(1400) \mu^+ \mu^-$  with  $\theta_{K_1} = -57^\circ$  is enhanced by about 80% compared with that with  $\theta_{K_1} = -34^\circ$ ,

The rates for  $B \to K_1(1270)\mu^+\mu^-$  is not so sensitive to variation of  $\theta_{K_1}$ .

 $\theta_{K_1}$  can be well determined by the ratio:

$$R_{d\Gamma/ds,\mu} \equiv \frac{d\Gamma(B^- \to K_1^-(1400)\mu^+\mu^-)/ds}{d\Gamma(B^- \to K_1^-(1270)\mu^+\mu^-)/ds}$$



Insensitive to form factors and resonances



| Mode                                | $\mathcal{B}_{ m nr} 	imes 10^6$             | Mode                                                            | $\mathcal{B}_{ m nr}	imes 10^6$              |
|-------------------------------------|----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| $B^- \to K_1^-(1270) e^+ e^-$       | $2.7^{+1.5+0.0}_{-1.2-0.3}$                  | $\overline{B}{}^0 \to \overline{K}{}^0_1(1270) e^+ e^-$         | $2.5_{-1.1-0.3}^{+1.4+0.0}$                  |
| $B^- \to K_1^-(1270) \mu^+ \mu^-$   | $2.3^{+1.3+0.0}_{-1.0-0.2}$                  | $\overline{B}{}^0 \to \overline{K}{}^0_1(1270)\mu^+\mu^-$       | $2.1_{-0.9-0.2}^{+1.2+0.0}$                  |
| $B^- \to K_1^-(1270) \tau^+ \tau^-$ | $0.08\substack{+0.04+0.00\\-0.03-0.01}$      | $\overline{B}{}^0 \to \overline{K}{}^0_1(1270)\tau^+\tau^-$     | $0.08\substack{+0.04+0.00\\-0.03-0.01}$      |
| $B^- \to K_1^-(1400) e^+ e^-$       | $0.10\substack{+0.03+0.25\\-0.03-0.05}$      | $\overline{B}{}^0 \rightarrow \overline{K}{}^0_1(1400) e^+ e^-$ | $0.09\substack{+0.03+0.23\\-0.03-0.04}$      |
| $B^- \to K_1^-(1400) \mu^+ \mu^-$   | $0.06\substack{+0.02+0.18\\-0.01-0.02}$      | $\overline{B}{}^0 \to \overline{K}{}^0_1(1400)\mu^+\mu^-$       | $0.06\substack{+0.02+0.18\\-0.01-0.02}$      |
| $B^- \to K_1^-(1400) \tau^+ \tau^-$ | $0.001\substack{+0.000+0.005\\-0.000-0.001}$ | $\overline{B}{}^0 \to \overline{K}{}^0_1(1400)\tau^+\tau^-$     | $0.001\substack{+0.000+0.005\\-0.000-0.001}$ |



The ratio is less than 0.15 for  $-47^{\circ} \leq \theta_{K_1} \leq -21^{\circ}$ 

 $R_{e,\mathrm{nr}} = 0.04^{+0.01+0.11}_{-0.01-0.02}, \quad R_{\mu,\mathrm{nr}} = 0.03^{+0.01+0.09}_{-0.01-0.01}, \quad R_{\tau,\mathrm{nr}} = 0.02^{+0.01+0.07}_{-0.00-0.02}$ 





$$B \rightarrow \begin{cases} K_1(1270) \to K\rho \to K\pi\pi \\ K_1(1400) \to K^*\pi \to K\pi\pi \end{cases} + \ell \ell$$

Forward-Backward Asymmetry  $B \xrightarrow{\ell^+} K_1 - B \xrightarrow{\ell^+} K_1$ 

### **Forward-Backward Asymmetry**

$$\frac{dA_{\rm FB}}{d\hat{s}} = -\frac{G_F^2 \alpha_{\rm em}^2 m_B^5}{2^8 \pi^5} |V_{ts}^* V_{tb}|^2 \hat{s} \hat{u}(\hat{s})^2 \times c_{10} \bigg[ \operatorname{Re}(c_9^{\rm eff}(\hat{s})) A^{K_1} V_1^{K_1} + \frac{\hat{m}_b}{\hat{s}} c_7^{\rm eff} \bigg\{ A^{K_1} T_2^{K_1} (1 - \hat{m}_{K_1}) + V_1^{K_1} T_1^{K_1} (1 + \hat{m}_{K_1}) \bigg\} + \frac{\hat{m}_b}{\hat{s}} \Delta_{\rm HS} \bigg]$$

#### with hard spectator correction

$$\Delta_{\text{HS}} = \left\{ (1 + \hat{m}_{K_1}) V_1^{K_1} + (1 - \hat{m}_{K_1}) (1 - \hat{s}) A^{K_1} \right\} \\ \times \frac{\alpha_s(\mu_h) C_F}{4\pi} \frac{\pi^2}{N_c} \frac{f_B f_{K_1}^{\perp}}{\lambda_{B,+} m_B} \int_0^1 du \, \Phi_{K_1}^{\perp}(u) T_{\perp,+}^{(\text{nf})}(u) du \, \Phi_{K_1}^{\perp}(u) du \, \Phi$$

Non-factorizable contribution, see Beneke, Feldmann & Seidel hep-ph/0106067

#### Forward-Backward Asymmetry (FBA)





#### **New Physics**

The sign of  $Re(C_7^{eff})$  can be flipped in susy models with non-minimal flavor violation via gluino-down-squark loops

In general flavor violating supersymmetric models the sign of  $c_9$  and  $c_{10}$  can be flipped



 $R_{\mu,nr}$  is highly insensitive to the NP effect and thus is suitable for determining the value of  $\theta_{K1}$ 

R<sub>i</sub>=1.0 (solid), 1.2 (dotted), 0.8 (dot-dashed) and -1.0 (dashed)

where  $R_i \equiv R_7$ , or  $R_9$  or  $R_{10}$ 

$$c_i \equiv c_i^{\text{SM}} + c_i^{\text{NP}} = R_i c_i^{\text{SM}} \text{ for } c_i = c_7^{\text{eff}}, c_9, c_{10}, c_{10}$$

Ratio of differential widths as function of the dimuon invariant mass, s



Forward-Backward Asymmetry of  $B \rightarrow K_1(1270) \mu^+ \mu^-$ 



Dash: flipped sign of  $c_7^{eff}$ 





Double-dotted dash: sign flips for  $c_9$  and  $c_{10}$ Dash: flipped sign $(c_{10})$ long-short dash: sign flips for  $c_7$  and  $c_{10}$ 

Dash: flipped sign( $c_9$ )



# **BACK UP**

#### For axial-vecotr mesons: Decay constants

 $\langle 3P_{1}(p,\varepsilon) | \overline{q} \gamma_{\mu} \gamma_{5} q' | 0 \rangle = i f_{3P_{1}} m_{3P_{1}} \varepsilon_{\mu}^{*}, \qquad \langle 1P_{1}(p,\varepsilon) | \overline{q} \sigma_{\mu\nu} \gamma_{5} q' | 0 \rangle = f_{1P_{1}}^{\perp} (\varepsilon_{\mu}^{*} p_{\nu} - \varepsilon_{\nu}^{*} p_{\mu})$ 

scale dependent

| $^{3}P_{1}$         | $a_1(1260)$ | $f_1$      | $f_8$      | $K_{1A}$   |
|---------------------|-------------|------------|------------|------------|
| $f_{^3P_1}$         | $238\pm10$  | $245\pm13$ | $239\pm13$ | $250\pm13$ |
| $^{1}P_{1}$         | $b_1(1235)$ | $h_1$      | $h_8$      | $K_{1B}$   |
| $f_{^1P_1}^{\perp}$ | $180 \pm 8$ | $180\pm12$ | $190\pm10$ | $190\pm10$ |

QCDSR by KCY, '07

#### Form factors for $B \rightarrow A$

$$\begin{split} \langle A(p,\lambda) | A_{\mu} | \overline{B_{q}}(p_{B}) \rangle &= i \frac{2}{m_{B_{q}} - m_{A}} \varepsilon_{\mu\nu\alpha\beta} \epsilon_{(\lambda)}^{*\nu} p_{B}^{\alpha} p^{\beta} A^{B_{q}A}(q^{2}), \\ \langle A(p,\lambda) | V_{\mu} | \overline{B}_{q}(p_{B}) \rangle &= - \bigg\{ (m_{B_{q}} - m_{A}) \epsilon_{\mu}^{(\lambda)*} V_{1}^{B_{q}A}(q^{2}) - (\epsilon^{(\lambda)*} \cdot p_{B})(p_{B} + p)_{\mu} \frac{V_{2}^{B_{q}A}(q^{2})}{m_{B_{q}} - m_{A}} \\ &- 2m_{A} \frac{\epsilon^{(\lambda)*} \cdot p_{B}}{q^{2}} q^{\mu} \left[ V_{3}^{B_{q}A}(q^{2}) - V_{0}^{B_{q}A}(q^{2}) \right] \bigg\}, \end{split}$$

By light cone sum rules (KCY,PRD78:034018,2008)

26

# Light-cone distribution amplitudes (LCDAs)

chiral-even

$$\begin{split} \langle A(P,\lambda) | \bar{q}_1(y) \gamma_\mu \gamma_5 q_2(x) | 0 \rangle &= i f_A m_A \int_0^1 du \, e^{i(u \, py + \bar{u} px)} \left\{ p_\mu \, \frac{\epsilon^{*(\lambda)} z}{pz} \Phi_{\parallel}(u) + \varepsilon^{*(\lambda)}_{\perp\mu} g_{\perp}^{(a)}(u) \right\} \\ \langle A(P,\lambda) | \bar{q}_1(y) \gamma_\mu q_2(x) | 0 \rangle &= -i f_A m_A \, \varepsilon_{\mu\nu\rho\sigma} \, \epsilon^{*\nu}_{(\lambda)} p^\rho z^\sigma \, \int_0^1 du \, e^{i(u \, py + \bar{u} \, px)} \underbrace{g_{\perp}^{(v)}(u)}_{4} \end{split}$$

chiral-odd

$$\begin{split} \langle A(P,\lambda)|\bar{q}_{1}(y)\sigma_{\mu\nu}\gamma_{5}q_{2}(x)|0\rangle &= f_{A}^{\perp} \int_{0}^{1} du \, e^{i(u\,py+\bar{u}\,px)} \left\{ \left(\varepsilon_{\perp\mu}^{*(\lambda)}p_{\nu} - \varepsilon_{\perp\nu}^{*(\lambda)}p_{\mu}\right) \Phi_{\perp}(u) \right. \\ &\left. + \frac{m_{A}^{2} \, \epsilon^{*(\lambda)} z}{(pz)^{2}} \left(p_{\mu}z_{\nu} - p_{\nu}z_{\mu}\right) h_{\parallel}^{(t)}(u) \right\} \\ \langle A(P,\lambda)|\bar{q}_{1}(y)\gamma_{5}q_{2}(x)|0\rangle &= f_{A}^{\perp}m_{A}^{2}(\epsilon^{*(\lambda)}z) \int_{0}^{1} du \, e^{i(u\,py+\bar{u}\,px)} \frac{h_{\parallel}^{(p)}(u)}{2}, \end{split}$$

twist-2:  $\Phi_{\parallel}, \Phi_{\perp}$ 

twist-3:  $g_{\perp}^{(v)}, g_{\perp}^{(a)}, h_{\perp}^{(t)}, h_{\parallel}^{(p)}$  related to twist-2 ones via Wandzura-Wilczek relations (neglecting 3-parton distributions)

#### <u><sup>1</sup>P<sub>1</sub> meson</u>

Due to G-parity,  $\Phi_{\perp}$ ,  $h_{\parallel}{}^{(t)}$ ,  $h_{\parallel}{}^{(p)}$  are symmetric under  $u \rightarrow 1-u$ , while  $\Phi_{\parallel}, g_{\perp}{}^{(v)}$ ,  $g_{\perp}{}^{(a)}$  are antisymmetric with the replacement  $u \rightarrow 1-u$  in SU(3) limit

$$\int_0^1 du \Phi_{\parallel}(u) = \int_0^1 du g_{\perp}^{(a)}(u) = \int_0^1 du g_{\perp}^{(v)}(u) = \int_0^1 du g_3(u) = 0$$

![](_page_27_Figure_3.jpeg)

#### <u>³P₁ meson</u>

Due to G-parity,  $\Phi_{\perp}$ ,  $h_{\parallel}^{(t)}$ ,  $h_{\parallel}^{(p)}$  are anti-symmetric under  $u \rightarrow 1-u$ , while  $\Phi_{\parallel}, g_{\perp}^{(v)}, g_{\perp}^{(a)}$  are symmetric with the replacement  $u \rightarrow 1-u$  in SU(3) limit

$$\int_0^1 du \Phi_{\perp}(u) = \int_0^1 du h_{||}^{(t)}(u) = \int_0^1 du h_{||}^{(p)}(u) = \int_0^1 du h_3(u) = 0$$

**<u>Convention:</u>**  $\int_0^1 du \Phi_{\parallel}^{{}^3P_1}(u) = 1$   $f_{{}^3P_1}^{\perp} = f_{{}^3P_1}$ 

#### Gegenbauer moments

KCY, Nucl. Phys. B776, 187 (2007)

| μ                                   | $a_2^{\parallel,a_1(1260)}$                                                                           | $a_2^{\parallel,f_1^{3_{P_1}}}$                                                                         | $a_2^{\parallel,f_8^{3_{P_1}}}$                                                                             | $a_2^{\parallel,K_{1A}}$                                                                         | $a_1^{\parallel,K_{1A}}$                                                                |                                                                                          |
|-------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1 GeV                               | $-0.02\pm0.02$                                                                                        | $-0.04\pm0.03$                                                                                          | $-0.07\pm0.04$                                                                                              | $-0.05\pm0.03$                                                                                   | $-0.30\substack{+0.26\\-0.00}$                                                          |                                                                                          |
| $2.2~{ m GeV}$                      | $-0.01 \pm 0.01$                                                                                      | $-0.03\pm0.02$                                                                                          | $-0.05 \pm 0.03$                                                                                            | $-0.04\pm0.02$                                                                                   | $-0.24\substack{+0.21\\-0.00}$                                                          |                                                                                          |
| μ                                   | $a_1^{\perp,a_1(1260)}$                                                                               | $a_1^{\perp,f_1^{\mathfrak{d}_{P_1}}}$                                                                  | $a_1^{\perp,f_8^{s_{P_1}}}$                                                                                 | $a_1^{\perp,K_{1A}}$                                                                             | $a_0^{\perp,K_{1A}}$                                                                    | $a_2^{\perp,K_{1A}}$                                                                     |
| 1 GeV                               | $-1.04 \pm 0.34$                                                                                      | $-1.06\pm0.36$                                                                                          | $-1.11\pm0.31$                                                                                              | $-1.08\pm0.48$                                                                                   | $0.26\substack{+0.03\\-0.22}$                                                           | $0.02\pm0.21$                                                                            |
| $2.2  {\rm GeV}$                    | $-0.81 \pm 0.26$                                                                                      | $-0.82\pm0.28$                                                                                          | $-0.86 \pm 0.24$                                                                                            | $-0.84\pm0.37$                                                                                   | $0.24\substack{+0.03\\-0.21}$                                                           | $0.01\pm0.15$                                                                            |
|                                     |                                                                                                       |                                                                                                         |                                                                                                             |                                                                                                  |                                                                                         |                                                                                          |
| μ                                   | $a_1^{\parallel,b_1(1235)}$                                                                           | $a_1^{\parallel,h_1^{+_{P_1}}}$                                                                         | $a_1^{\parallel,h_8^{+P_1}}$                                                                                | $a_1^{\parallel,K_{1B}}$                                                                         | $a_0^{\parallel,K_{1B}}$                                                                | $a_2^{\parallel,K_{1B}}$                                                                 |
| μ<br>1 GeV                          | $a_1^{\parallel,b_1(1235)} -1.95 \pm 0.35$                                                            | $a_1^{\parallel,h_1^{+P_1}}$<br>-2.00 ± 0.35                                                            | $a_1^{\parallel,h_8^{-P_1}}$<br>-1.95 ± 0.35                                                                | $a_1^{\parallel,K_{1B}}$<br>-1.95 ± 0.45                                                         | $a_0^{\parallel,K_{1B}}$ $-0.15 \pm 0.15$                                               | $a_2^{\parallel,K_{1B}} \ 0.09^{+0.16}_{-0.18}$                                          |
| μ<br>1 GeV<br>2.2 GeV               | $a_1^{\parallel,b_1(1235)} -1.95 \pm 0.35 -1.56 \pm 0.28$                                             | $a_1^{\parallel,h_1^+P_1}$<br>-2.00 ± 0.35<br>-1.60 ± 0.28                                              | $a_1^{\parallel,h_8^{+P_1}}$<br>-1.95 ± 0.35<br>-1.56 ± 0.28                                                | $a_1^{\parallel,K_{1B}}$<br>-1.95 ± 0.45<br>-1.56 ± 0.36                                         | $a_0^{\parallel,K_{1B}}$<br>$-0.15 \pm 0.15$<br>$-0.15 \pm 0.15$                        | $a_2^{\parallel,K_{1B}}$ $0.09^{+0.16}_{-0.18}$ $0.06^{+0.11}_{-0.13}$                   |
| μ<br>1 GeV<br>2.2 GeV<br>μ          | $a_1^{\parallel,b_1(1235)}$<br>-1.95 ± 0.35<br>-1.56 ± 0.28<br>$a_2^{\perp,b_1(1235)}$                | $a_1^{\parallel,h_1^{+P_1}}$ $-2.00 \pm 0.35$ $-1.60 \pm 0.28$ $a_2^{\perp,h_1^{+P_1}}$                 | $a_1^{\parallel,h_8^{+P_1}}$ $-1.95 \pm 0.35$ $-1.56 \pm 0.28$ $a_2^{\perp,h_8^{+P_1}}$                     | $a_1^{\parallel,K_{1B}}$ $-1.95 \pm 0.45$ $-1.56 \pm 0.36$ $a_2^{\perp,K_{1B}}$                  | $a_0^{\parallel,K_{1B}} \ -0.15 \pm 0.15 \ -0.15 \pm 0.15 \ a_1^{\perp,K}$              | $a_2^{\parallel,K_{1B}}$<br>$0.09^{+0.16}_{-0.18}$<br>$0.06^{+0.11}_{-0.13}$             |
| μ<br>1 GeV<br>2.2 GeV<br>μ<br>1 GeV | $a_1^{\parallel,b_1(1235)}$<br>-1.95 ± 0.35<br>-1.56 ± 0.28<br>$a_2^{\perp,b_1(1235)}$<br>0.03 ± 0.19 | $a_1^{\parallel,h_1^{+P_1}}$<br>-2.00 ± 0.35<br>-1.60 ± 0.28<br>$a_2^{\perp,h_1^{+P_1}}$<br>0.18 ± 0.22 | $a_1^{\parallel,h_8^{-P_1}}$<br>-1.95 ± 0.35<br>-1.56 ± 0.28<br>$a_2^{\perp,h_8^{-1_{P_1}}}$<br>0.14 ± 0.22 | $a_1^{\parallel,K_{1B}}$<br>-1.95 ± 0.45<br>-1.56 ± 0.36<br>$a_2^{\perp,K_{1B}}$<br>-0.02 ± 0.22 | $a_0^{\parallel,K_{1B}}$ $-0.15 \pm 0.15$ $-0.15 \pm 0.15$ $a_1^{\perp,K}$ $0.30^+_{-}$ | $a_{2}^{\parallel,K_{1B}}$ $0.09^{+0.16}_{-0.18}$ $0.06^{+0.11}_{-0.13}$ $a_{1B}^{0.00}$ |