LASER SAFETY

Presented by PY Wu

Outline

- Classification
- Laser Damage
- Maximum Permissible Exposure (MPE)
- Optical Density (OD)
- Tips

laser Safety

Class I Lasers

- *Lasers that are not hazardous for continuous viewing , These consist of low power lasers or higher power embedded lasers. (i.e. laser printers)
- *Class 1 lasers are incapable of causing eye damage and are therefore exempt from any control measures. (typically continuous wave: cw 0.4 mW at visible wavelengths).

Class 2 Visible Lasers (400 to 700 nm)

*Lasers emitting visible light which because of normal human aversion responses (occur within 0.25 seconds), do not normally present a hazard, but would if viewed directly for extended periods of time, greater than 1000 seconds (like many conventional light sources)
*power < 1mW</p>

Class 3a : Medium-power lasers (visible)

Lasers or that normally would not produce a hazard if viewed for only momentary periods with the unaided eye. They may present a hazard if viewed using collecting optics.(fiber optics loupe or telescope).

power = 1 \sim 5 \text{ mW} or intensity < 25 \text{ W/m}^2

Class 3b

Lasers that present an eye and skin hazard if viewed directly. This includes both intrabeam viewing and reflections.

Class 3b lasers do not produce a hazardous diffuse reflection except when viewed at close proximity. (cw: 5-500 mW, pulsed: 10 J/cm² or the diffuse reflection limit, whichever is lower).

Class 4 Lasers

High power lasers capable of causing severe eye with short-duration (<0.25 s) if without protection, i.e. exposures to the direct beam, specular reflection or diffusely reflected beam. Class 4 lasers are also capable of causing severe skin damage and igniting flammable and combustible materials.

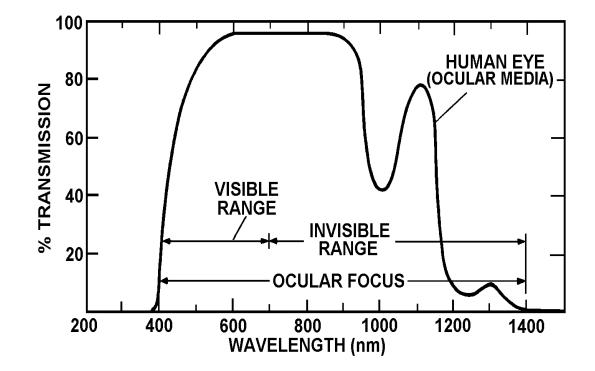
(cw: 500 mW, pulsed: 10 J/cm² or the diffuse reflection limit)

Electrical Hazards:

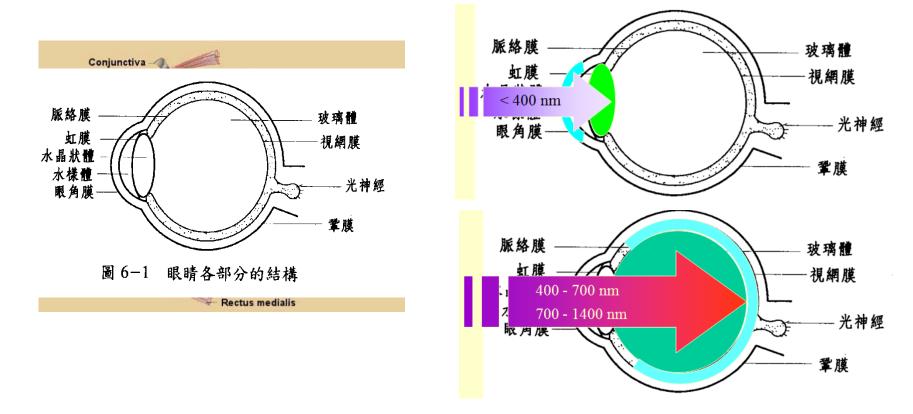
- electric shock
 - >> grounded your laser

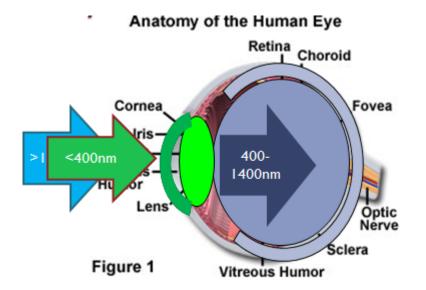
>> wear a wrist strap to prevent to prevent static electricity build up on your body

fire


- Chemical Hazards:
 - Laser laboratories contain many hazards, ex: chemical dye
 - Laser interactions with certain materials may produce toxic fumes.

Miscellaneous Ancillary Hazards


- Fire hazards: Flammable materials may be ignited by direct beams or specular reflections of high-power laser. Dust explosion should be taken in consideration, too.
- Hazard form cryogenic coolant or compressed gas
- Ionizing Radiation (X rays): high-voltage vacuum tubes, electric discharge lasers, power supplies over 15 kilovolts
- Natural calamity: earthquake


Optical Radiation Hazards to the Eye

Eye injury depends on the wavelength of laser

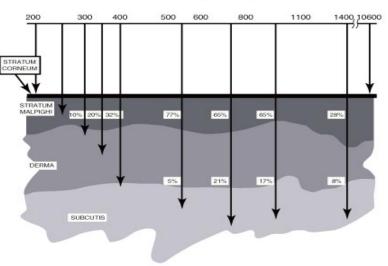

Optical Radiation Hazards to the Eye and skin Injury depends on the wavelength of laser

TABLE 1. SPECTRAL REGIONS OF LASER OUTPUTS AND PARTS OF THE EYE MOST SUSCEPTIBLE TO DAMAGE

Spectral Region	Wavelength (nanometers)	Frequency (x 10 ¹⁴ Hz)	Eye part susceptible to damage	
FAR-MID UV	20-320	150-9.4	Cornea	
NEAR UV	320-390	9.4-7.7	Lens, Cornea	
VISIBLE	390-750	7.7-4.0	Retina	
NEAR IR	750-1400	4.0-2.1	Iris, Retina	
NEAR-MID IR	1400-3000	2.3-1.0	Cornea, Retina	
MID-FAR IR	3000-500,000	1.0-0.006	Comea	

SKIN EFFECTS

Laser Damage Mechanisms

Electromechanical/ Acoustic Damage

- Extremely high power density (109–1,012 W/cm²) in extremely short pulses (ns) induces dielectric breakdown in tissue
- This damage is permanent

Photoablation

- The photodissociation or direct breaking of intramolecular bonds in biopolymers
- Caused by absorption of incident photons and subsequent release of biological material

Laser Damage Mechanisms

Thermal Damage

The conversion of laser energy into heat

Photochemical Damage

- Light below 400 nm
- The effect is cumulative over a period of days.

Maximum Permissible Exposure (MPE)

- MPE is the maximum level of laser radiation to which a human can be exposed without adverse biological effects to the eye or skin.
- Calculation of MPE includes:
- The energy involved in the exposure
- The area of the exposure
- The duration of the exposure
- The wavelength of the laser light

Maximum Permissible Exposure (MPE)

MPE is the maximum level of laser radiation to which a human can be exposed without adverse biological effects to the eye or skin.

職光時間 被長 1 [s] l(nm]		10 ⁻⁹ ~10 ⁻⁷	10 ⁻⁷ ~ 18×10 ⁻⁶	$_{\rm \sim 5 \times 10^{-5}}^{18 \times 10^{-6}}$	${}^{5 \times 10^{-5}}_{\sim 10}$	10~103	10 ⁴ ~10 ⁴	$^{10^3}_{\sim 3 \times 10^4}$	
200~302.5		30 Jm ^{-†}							
302, 5~315	3×10 ¹⁰ Wm ⁻²	$t > T_1$ $C_2 \mathrm{Jm^{-2}}$ $t < T_1$ $C_2 \mathrm{Jm^{-2}}$ $C_2 \times 10^{-3} \mathrm{Wm^{-2}}$						-1 Wm-2	
315~400		$C_i \mathrm{Jm}^{-1}$			10° Jm-*	10 Wm-2			
400~550	5×10 ⁶ Wm ⁻³	5×10-3 Jm-2		$18t^{0.75} \text{Jm}^{-2}$ $t < T_2$		100 Jm ⁻² 10 ⁻² V		10-: Wm-:	
550~700						10	$T_{1}C_{1}\times 10^{2} \text{ Jm}^{-1}$	$C_3 \times 10^{-2}$ Wm ⁻²	
700~1,050	$5C_4 \times 10^6$ Wm ⁻²	5C4×10 ⁻¹ Jm ⁻²		18C4t ^{0.75} Jm ⁻²		1	3. 2 C4 Wm ⁻²		
1,050~1,400	5×10 ⁷ Wm ⁻¹	5	× 10 ⁻² Jm	-2	90t ^{0,75} Jm ⁻²		10 Wm-1		
1,400~106	10 ¹¹ Wm ⁻¹	100 Jm ⁻¹ 5, 600t ^{0, 15} Jm ⁻²			n-1	1,000 Wm ⁻²			

Optical Density (OD)

OD is the logarithm to the base ten of the reciprocal of the transmittance

$$OD = \log (Ei/Et)$$

 \square Ei = incident beam irradiance (W/cm²)

→ worst case exposure

 \Box Et = transmitted beam irradiance \longrightarrow MPE

Optical Density (OD)

Example:

0.514 um argon laser d = 7 mm (worst-case pupil size) P = 5 Watts Ei= P/A = 4 P/ π d² = 12.99 W/cm² Et= MPE = 16.7 W/cm²

□ OD= log (Ei/Et) = 5.9

- Purpose:
 - To minimize direct eye exposure
- Precautions
- Do not intentionally look directly into the laser beam or at a specular reflection, regardless of its power
- II. Terminate the beam at the end of its useful path

- III. Locate the beam path at a point other than eye level
- IV. Orient the laser so that the beam is not directed toward entry doors or aisles.

v. Minimize specular reflections.

- VI. Mount the laser system on a stable platform to maintain the beam in a fixed position during operation .
- vii. Confine primary beams and dangerous reflections to the optical table.

- VIII. Clearly identify beam paths and ensure that they do not cross populated areas or traffic paths.
- IX. When the beam path is not totally enclosed, locate the laser system so that the beam will be outside the normal eye-level range, which is between 1.2 to 2 meters from the floor.

□ Warning signs :

Post at each entrance to the operating area

"CAUTION - HIGH POWER LASER"

Wear goggles with proper OD, and never take it off when you are under laser exposure.

Other Tips

- A log must be maintained showing periods of use, service, maintenance and incidents.
- A written record must be kept of each test in the log book.