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Introduction

1. Time variation of the particle and
anti-particle number asymmetry is a
very important issue in Baryogenesis
and Leptogenesis.

2. They are important when we study
how the asymmetry of Baryon number
or Lepton number evolves In the
curved space time.



3.

In the first part of my talk, we study
the time variation of particle number in
a simple quantum mechanical model.
The toy model shows the meaning of
the particle and anti-particle
asymmetry in the scence of the
statistical average with the density
matrix. It also shows the importance of
the role of the chemical potential.



4.

5.

In the second part of my talk, the
model is extended to the field
theoretical model. This is mainly due
to that we are applying the path
integral. The (wave) functional
representation of the density matrix
with non-zero chemical potential is
derived.

In the final part, | explain the field
theoretical model in curved space time.



1 Time variation of particle number in
quantum mechanics
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Classical trajectory

x(t) = %(cos w4t + cosw_t),

y(t) = %(cos wit — cosw_t).
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Figure 1: Lissajous figure:(Trajectory)
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Quantum mechanics of the oscillator model
the complex coordinate.
T + 1y

V2

Rotation on (x,y) plane corresponds to

~ =

U(1) transformation on z.
z— 2 =e¥2

ewz

V(z) = wz\z|2 ') > (z2 — z*z)




Charge NN corresponding to U(1)
transformation < angular momentum

, dz dz™
N =i(z"— z) = —L,.
dt dt
a -+ bl
z = :



Hamiltonian and Particle number Particle
Number N = N, — IN,.

H — HO + HlAN|:2’

Ho = w(a'a 4+ b'b) = w(N, + Np)

IAN|=2 _ _iﬂ(az + b2 — af2 — p?).
4

[H,N| # 0, [Ho, N| =0



Initial density matrix and the particle
number In statistical average
Grand Canonical ensemble

p(t — O) — e_ﬁ(HO_“N)/Tre—,B(HO—MN)
8=1/T

Chemical potential u. Temperature T'.



Hy — puN is similar to the Hamitonian for
Landau level.

Ho — uN = (w — p)a'a + (w + p)b'd
eB|

2m
Hyondauw = sz(bTb);
—p(a'a — b'b) = wpL,.
Energy shift due to the Magnetic moment of

W= u— wp =

the orbital angular momentum.



statistical average of the particle number

(N(0)) = TrNp(0)
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 eBlw—p) — 1 eBwtp) _ 1
sinh Bu

cosh Bw — cosh Bu

When w > |u|, the sign of the chemical
potential controls the excess of particle a
quanta or anti-particle b.



Time development of particle number
operator: N (t) = a'(t)a(t) — bT(t)b(t).
The time development is exactly solvable:
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a(t) = (fy () — iH (t))a — h_(t)al
+i(f_(t) — iH_(t))b + ihy (t)bl
b(t) = —i(f_(t) — iH_(t))a + ihy (t)al
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N(t) = al
(t)a(t) — bl (£)b(¢)
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(N(1)) _ TeN(2)p(0)
(N(0))  TrN(0)p(0)
= cos(wy — w_ )t +

1 W4 . .
{— | — —|— — | — 1} sinwytsinw_t.
2 \w_ W
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~ cos(wet) + E(COS wet — cos 2wt).
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Figure 3: V(1)) (¢ = 0.4). Green

(N (0))

curve: 10 X € suppressed term. Blue curve:

CcOS weEt.
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0.1) Green curve: 10 X € suppressed term.

Blue curve: cos wet.



Lesson from quantum mechanical model

e The large time behaviour of the
particle number is determined by the
period related to the difference of the
oscilation frequencies w; — ws = we.

e The amplitude of the rapid oscillation
is suppressed by €.



Particle number in field theoretical Model
Complex scalar field with U(1) breaking

mass term:
L =08,¢9'0"¢ —mio'¢ + B*(¢* + ¢?)

B?: U(1) breaking term. ¢ — e*Y¢.



D1 + 1P2
/2 ,

In terms of the real scalars ¢ =

_ Lo, 6.0, i 2
L = 2(0.9i0"¢:) — —=¢;

mf:mé—BZ#mgzmé—l—Bz

Under the presence of U(1) breaking term
B?, the mass splitting of the real scalars is
non-zero and U(1) current does not

conserve.



Computing the current for U(1) charge
(particle number).

Ju = i(¢T8u¢ — 8M¢T¢)
— ¢28p&¢1 — 8u¢2¢1
One wants to compute the expectation

value of the U(1) current with some initial
condition.



The initial condition is specifed by the
density matrix.

<]M(X)> — TrjM(X)p(O),

o, o, 15
— (Gw“ By“)Glz(w’ Y) I

Gig(f’?a y) = Tr(p2(y)p1(x)p(0)]

The expectation value can be written by
the Green function of Keldysh.



Notation:

upper index (a,b,...= 1, 2) denotes if the
operator sits on the time ordered contour
or anti-time ordered contour of closed time
path.

Tr[T(pi (1) $j(22)-) p(0) T (P1(y1) D (y2))]-

_ 11...22
— Gig Im (3317 L2y 09 Y1y yz)

The operators at the left(right) of p is (anti-) time ordered. The lower indices of

1(J, l, m) = 1, 2 denote the scalar field ¢p; with the mass m ;.



The functional approach (Path Integral
approach) for Keldysh Green function from
2 Pl effective action.

Introduce the non-local source K(x,y):

SIWIK] _ /d¢iei(s+§ffqﬁé‘(w)K?jb(w,y)cb?(y))

I'G]| = WIK] — %T’P[KG]



1
I'[G{’] = —i-TrLnG}?
2 '

Cab )
—/dwT( + m3) Gy o(x, x)



The non local source K is related to the
density matrix at t = 0.

($11p(0)|¢2) =

e—% [dPz [ dPyod (x)ri® (x—y)d) ()

K(x,y) = —tk(x —y)d(x0)d(yo)



( x T m?)G;sz(w, y) — _icabéijé(m - y)
_|_/d4z(cK(£U,Z)G(Z7 Y) '?JP
Oy +m3) G5 (x,y) = —ic™6;;6(x — y)

—|—/d4z(G(a3,z)K(z,y)c ,?;’.

One can solve the Fourier transform of the
Green function: G75(z°,y", k).



sinh Bu

cosh w — cosh Bu
0

Gig(mo, yO’ k) —

(cos w1Y? sin wax sin w1y cos wax’ >
X

2w1 ZUJZ

w(k) = \/k2 + m3,
wi (k) = \/kz + m?2,wa (k) = \/k2 + ma.

mi:mé—Bz,mgzmé—l—Bz




The particle number density.
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It is similar to the quantum oscillator model
B2

€cE — —.
W2

B?2 B2
Wi = w 1——2,w2:w 1—|——2
W W

Now we have contribution from many

modes corresponding to k.



Extention to the curved space time.
ds? = dt? — a(t)*dx*dz* S.A. Ramsey and
B. L. Hu (PRD36,1997)

eiW[K,g] — d¢e’i5

o [ d*zd*yy/—g(@)\/—9(v)d(@) K (z,y)$(v)

S — / diz\/—g(D,¢iD"$; — (m2 + €R) did
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Schwinger Dyson Eq.

~iG™! — \/—g(DyD™u + m® + ER)é(x — y
= —v—g(@)K(x,y)v—9(v)
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Summary

e Time variation of particle number is
Investigated.

¢ Quantum mechanical model for particle
and anti-particle oscillation is
proposed. The expectation value of
the particle number is studied.

e The quantum field theory extention of
the quantum mechnical oscillator



model is studied.

e The outline to the extention to the
model in curved space time is shown.

e The model with interaction is given in
R. Hotta’s talk.



