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 1. Motivations 

(*) In the early universe with or without cosmological constants,  
    Can we obtain the mechanism for the nucleation of a false vacuum bubble? 
    Can a false vacuum bubble expand within the true vacuum background? 
 

 How can we be in the vacuum 
                with  
    positive cosmological constant ? 
 
   - KKLT(Kachru,Kallosh,Linde,Trivedi, PRD 2003)) 
   - an alternative way ?  
   :  Revisit the gravity effect in cosmological phase transitions 

(*) Or, the domain wall universe with charged BHs in the bulk spacetime? 
    (describe the dynamics of a domain wall universe with the charged BH.) 

We will study and classify  vacuum bubbles in various setup. 

 Observation : Our universe  is expanding with acceleration   
                   - needs  positive cosmological constant  

 The string theory landscape provides 
    a vast number of metastable vacua. 



Basics : Bubble formation  

)](1[/ /  Ο+=Γ −BAeV

Vacuum-to-vacuum phase transition rate 
 
 
 
 
 
 

B : Euclidean Action (semiclassical approx.) 
     S. Coleman, PRD 15, 2929 (1977) 
     S. Coleman and F. De Luccia, PRD21, 3305 (1980) 
     S. Parke, PLB121, 313 (1983) 
 
 
A : determinant factor from the quantum correction  
     C. G. Callan and S. Coleman, PRD 16, 1762 (1977) 

- Nonperturbative Quantum Tunneling 
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(1) Tunneling in Quantum Mechanics  
- particle in one dim. with unit mass 

-Lagrangian 

 
 Quantum Tunneling:(Euclidean time  -∞< τ < 0 ) 
   The particle (at “false vacuum” q0) penetrates  
   the potential barrier and materializes at the  
   escape point, σ , with zero kinetic energy, 

where                                                                        = Classical Euclidean  
                                                                                   action (difference)                                                                  
Eq. of motion :                            boundary conditions 
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Tunneling probability 

 Time evolution after tunneling : (back to Minkowski time, t > 0)  
  Classical Propagation after tunneling (at τ = 0 ) 
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→ The bounce solution is a particle moving in the potential –V in time τ 
                                  is unstable (exists a mode w/ negative eigenvalue)  

it=τ
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(2) Tunneling  in multidimension 

Lagrangian 
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The leading approx. to the tunneling rate  
is obtained from the path and endpoints  
that minimize the tunneling exponent B.  
 
 
 
 
 
 
Boundary conditions for the bounce 
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Time evolution after the tunneling is classical with the ordinary Minkowski time. 



(3) Tunneling in field theory (in flat spacetime ) 

Theory  with single scalar field 
 
 
 
where 
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Equation for the bounce from                            

with boundary conditions 

Tunneling rate : 

(Finite size true vacuum bubble) 
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O(4)-symmetry  : Rotationally invariant Euclidean metric   
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The Euclidean field equations        boundary conditions 

“Particle” Analogy : 

“Particle” moving in the potential  –U, with the 
damping force  inversely proportional to time 

At time 0, the particle is released at rest 
(The initial position should be chosen such that) 
at time infinity, the particle will come to rest at      .  

The motion of a particle located at position phi  at time eta 
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Thin-wall approximation 

B is the difference 
In this approximation 
 
Outside the wall 
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Large 4dim. spherical bubble  
with radius R and thin wall 



In the wall 
 
 
 
where  
 
 
inside the wall 
 
 
the radius of a true vacuum bubble 
 
 
the nucleation rate of a true vacuum bubble  
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Evolution of the bubble 
The false vacuum makes a quantum tunneling into a true vacuum 
bubble at time t = 0,  described by 

Afterwards, it evolves according to the classical equation of motion 

The solution (by analytic continuation) 
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Note : 1) Analytic continuation in the presence of gravity is nontrivial. 
2) The evolution of the (bubble or domain) wall can also be studied 
using the junction conditions  



2. Bubble nucleation in the Einstein gravity 

Action 
 
 
 
Einstein equations 
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S. Coleman and F. De Luccia, PRD21, 3305 (1980) 

O(4)-symmetric Ansatz : Rotationally invariant Euclidean metric   
 
 
The Euclidean field equations                       boundary conditions 
 
 
(Scalar eq. of motion & Einstein eq.)                                        ,  
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(i) From de Sitter to flat spacetime  
 
the radius of a true vacuum bubble  
 
where  
 
the nucleation rate of a true vacuum bubble  
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(ii) From flat to Anti-de Sitter spacetime 
 
the radius of a true vacuum bubble  
 
 

the nucleation rate of a true vacuum bubble  
 

Note : ρ bar larger than η . Transition probability decreases. (B > B0  )  
          For small enough Є, false vacuum can be stable 

Note : 1)  ρ bar less than η  and less than or equal to Λ,  
          2) Transition probability increases. (B < B0  )       



 
(iii) the case of arbitrary vacuum energy 
S. Parke, PLB121, 313 (1983) 
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•Evolution of the bubble  
 

   via analytic continuation back to Lorentzian time   

  Ex) de Sitter -> de Sitter : A. Brown & E. Weinberg, PRD 2007  



Cases for True & False Vacuum Bubble : 

dS  dS 

dS  M 

dS AdS 
M  AdS 

AdS  AdS 

True Vacuum Bubble 

False Vacuum Bubble 



False-to-true True-to-false 

De Sitter – De Sitter O O 

De Sitter – Flat O ? 

De Sitter –  

Anti-de Sitter 
O ? 

Flat – Anti-de Sitter O ? 

Anti-de Sitter – Anti-
de Sitter  

O ? 



False-
to-true 

(True vac. 
Bubble) 

True-to-
false (*) 

(False vac. 
Bubble) 

De Sitter – de Sitter O O (*) 

Flat – de Sitter O O 

Anti de Sitter – de Sitter O O 

Anti de Sitter – flat O O 

Anti de Sitter – Anti de Sitter  O O 

(*) exists in   

(1)non-minimally coupled gravity 

   

or in  

(2)Brans-Dicke type theory 

(W.Lee, BHL, C.H.Lee,C.Park, PRD(2006)) 
(*)Lee, Weinberg, PRD 

Anti de Sitter - de Sitter 
Dynamics of False Vacuum Bubble : 

Can exists an expanding false vacuum 
bubble inside the true vacuum 

BHL, C.H.Lee, W.Lee, S. Nam, C.Park,  
PRD(2008)  (for nonminimal coupling) 

True & False Vacuum Bubbles 

BHL, W.Lee, D.-H. Yeom,  JCAP(2011) 
(for Brans-Dicke) 

Condition:  

(H.Kim,BHL,W.Lee, Y.J. Lee, D.-
H.Yoem,  PRD(2011)) 



2.1 True vacuum bubbles 
Large background (Parke): 
 
 
 
 
 
 
 
Half background : 
 
 
 
 
 
 
Small background :  
 
 

the size of the background space (or bubble) will be called “large'' (or “small'' ) 
if its size is larger than half of the de Sitter space itself. 

(with the de Sitter (dS) exterior geometry) 

BHL & W. Lee, CQG (2009) 

By redefining  η → ηmax  - η we get False Vacuum Bubbles with finite geometry. 



dS-dS dS-AdS 

dS-flat flat-AdS and AdS-AdS  

η η 

ρ 

Φ 

2-2. vacuum bubbles with finite geometry BHL, C.H. Lee, W.Lee & C.Oh, 



∃ Z2-symm. with finite geometry bubble 

Boundary condition (consistent with Z2-sym. 

 

 

- in de Sitter space.  

   The numerical solution by Hackworth and Weinberg.  

    The analytic computation and interpretation : 

    (BHL & W. Lee, CQG (2009)) 

 

This tunneling is possible 

due to the changing role of the second term 

in Eucildean equation from damping to 

accelerating during the phase transition. 

 

 

 

 

3 Tunneling between the degenerate vacua 



dS - dS 

flat -flat 

AdS-AdS 

B.-H. L, C. H. Lee, W. Lee & C. Oh, PRD82 (2010) 



Euclidean Solutions 
(1) Instanton solution  (symmetric double-well potential)  

(2) Bounce solution  (asymmetric double-well potential)  

Decay of the background vacuum state or the 
nucleation of a vacuum bubble 

The action has the same value as the action 
obtained in connection with the WKB 
calculation of the splitting in the energies of the 
two lowest levels for the double well potential. 

8    



Oscillaing solutions -  between flat-flat degenerate vacua    (              )   

27    

B.-H. Lee, C. H. Lee, W. Lee & C. Oh, arXiv:1106.5865 

This type of solutions is possible only if gravity is taken into account. 



2.Oscillaing solutions  -  between dS-dS degenerate vacua 
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3.Oscillaing solutions - between AdS-AdS degenerate vacua 
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The phase space of solutions 

36    

The y-axis represents no gravity. 
the notation (n_min, n_max), where n_min means the minimum number of 
oscillations and n_max the maximum number of oscillation 



37    

the schematic diagram of the phase space of all solutions including another 
type solution and the number of oscillating solutions with different κs.  
 
The left figure has κ = 0 line indicating no gravity effect. In the middle area 
including the flat case, n_min and n_max are increased as κ and κUo are 
decreased. The tendencies are indicated  as the arrows. In the 
left lower region, there exist another type solution.  
 
The right figure shows n_min and n_max are changed in terms of κUo and κ. 
As we can see from the figure, n_max and n_min are increased as κUo is 
decreased. 



4. Black Hole Pair creation by a domain wall  
  Introduction 

The system with a domain wall with Z_2 symmetry by 
  (1) cut-and-paste method  Caldwell, Chamblin and Gibbons,PRD(1996) 
  (2) by the instanton solution  
     Hackworth and E. J. Weinberg, PRD (2005);  
    B.-H. L. and W. Lee, CQG(2009);  
    B.-H. L, C. H. Lee, W. Lee, and C. Oh, PRD 82, 024019 (2010)]. 

the location of black holes 

Gwak, B.-H. L., W. Lee, Minamitsuji,  arXiv:1101.5748 



After the nucleation, the domain wall (that may be interpreted as our 
braneworld universe) evolves in the radial direction of the bulk spacetime.  

Application to the braneworld cosmology 

λ = 3A  : the effective cosmological constant.  
mass term  ~   the radiation in the universe  
charge term ~  the stiff matter  
                      with a negative energy density.  

Cosmological solutions  

the expanding domain wall (universe) solution (a > r∗,+).  
approaching the de Sitter inflation with λ, since the contributions of the 
mass and charge terms are diluted. 
 
contracting solution (a < r∗,+)  : the initially collapsing universe.  
The domain wall does not run into the singularity & experiences a bounce 
since there is the barrier in V (a) because of the charge q. 

The equation becomes  



5. Summary  and Discussions 

 We reviewed the formulation of the bubble. 
 
 False vacua  exist e.g., in non-minimally coupled theory. 

 
 Vacuum bubbles with finite geometry, with the radius & nucleation rate  
 
 The tunneling of degenerate vacua in dS, flat, & AdS.  
   Obtained the  transition rate and the radius of a bubble. 
 
 Exists Oscillating solutions; can make the thick domain wall. 

 
 Similar analysis for the Fubini instanton under investigation 

 
 Physical role and interpretation of many solutions are still not clear. 

  Studied a magnetically charged BH pair separated by a domain wall 
in the 4 or 5-dimensional spacetime with a cosmological constant.  
 
 The application to the braneworld cosmology has been discussed. 

 
 Can it be another alternative model for the accelerating expanding universe? 




	Vacuum Bubbles : revisited
	Contents
	 1. Motivations
	Basics : Bubble formation 
	(1) Tunneling in Quantum Mechanics 
	(2) Tunneling  in multidimension
	(3) Tunneling in field theory (in flat spacetime )
	O(4)-symmetry  : Rotationally invariant Euclidean metric  �����
	Thin-wall approximation
	In the wall����where ���inside the wall���the radius of a true vacuum bubble���the nucleation rate of a true vacuum bubble �
	Evolution of the bubble
	2. Bubble nucleation in the Einstein gravity
	Slide Number 13
	(i) From de Sitter to flat spacetime ��the radius of a true vacuum bubble ��where ��the nucleation rate of a true vacuum bubble 
	�(iii) the case of arbitrary vacuum energy�S. Parke, PLB121, 313 (1983)�
	Slide Number 16
	Slide Number 17
	Slide Number 18
	2.1 True vacuum bubbles
	Slide Number 20
	3 Tunneling between the degenerate vacua
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	4. Black Hole Pair creation by a domain wall �  Introduction
	Slide Number 30
	5. Summary  and Discussions
	Slide Number 32

