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1. Motivations

€ Observation : Our universe is expanding with acceleration
— needs positive cosmological constant

€ The string theory landscape provides v
a vast number of metastable vacua. A /\/ /\ M ﬂ/\
vV |V \/ ¢

€ How can we be in the vacuum
with
positive cosmological constant ?

— KKLT(Kachru,Kallosh,Linde, Trivedi, PRD 2003))
— an alternative way ?
. Revisit the gravity effect in cosmological phase transitions

(*) In the early universe with or without cosmological constants,
Can we obtain the mechanism for the nucleation of a false vacuum bubble?
Can a false vacuum bubble expand within the true vacuum background?

(*) Or, the domain wall universe with charged BHs in the bulk spacetime?
(describe the dynamics of a domain wall universe with the charged BH.)

We will study and classify vacuum bubbles in various setup.




Basics : Bubble formation
— Nonperturbative Quantum Tunneling

Vacuum-to—vacuum phase transition rate

(19

False” vacuum
[“True” vacuum

/]

B : Euclidean Action (semiclassical approx.) . o q
S. Coleman, PRD 15, 2929 (1977)
S. Coleman and F. De Luccia, PRD21, 3305 (1980)

S. Parke, PLB121, 313 (1983)

<

T/V =Ae ?""1+0O(R)]

A : determinant factor from the quantum correction
C. G. Callan and S. Coleman, PRD 16, 1762 (1977)
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e (1) Tunneling in Quantum Mechanics

- particle in one dim. with unit mass
-Lagrangian l(@]z_ i

® Quantum Tunneling:(Euclidean time —-< t<0)
The particle (at “false vacuum” qo) penetrates

the potential barrier and materializes at the
escape point, o, with zero kinetic energy,

Tunneling probability
C/V =Ae®"[1+0(h)]

where 5 - /M )= [a2

—) + Vig)

V“False” vacuum

“True” vacuum

/]

= Classical Euclidean

action (difference)

Eq. of motion : =t boundary conditions
dq —|—( dV) 0 xi=.‘xf=0 lima(z) =q,, qlz’ 0(c) =
dr* dq Al

— The bounce solution is a particle moving in the potential =V in tlme T
is unstable (exists a mode w/ negative eigenvalue)

® Time evolution after tunneling : (back to Minkowski time, t > 0)

Classical Propagation after tunneling (at t=0)
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(2) Tunneling in multidimension
Lagrangian

1 o o
L=22.0.4;=V(@)  V(a)=V(0;)=0
ij

W\ o '%#g%
The leading approx. to the tunneling rate AR
is obtained from the path and endpoints o;
that minimize the tunneling exponent B.
S
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Boundary conditions for the bounce

. dq;
I Im qi (77) = qoi ’d—f |T:0(Gi): O

T—>—0

Time evolution after the tunneling is classical with the ordinary Minkowski time.



(3) Tunneling in field theory (in flat spacetime )

Theory with single scalar field v
S = j - nd“x{—%vacpvacp—u (cb)}
where n=detr,,, (—+,+,+)

m\ ;

False vacuum True vacuum

Equation for the bounce fromﬁjerbE =0

82
[62+v2j® =U"'(D)
¢ (Finite size true vacuum bubble)

with boundary conditions /
limo@ x) =0, im0 =, % 0,%)=0
T—>to0 IX|—o0 T
Tunneling rate : Vv

B =S, =[drd’

1(o0) 1,
2(@—) +§(VCD) +U(CI))}

T



O(4)-symmetry : Rotationally invariant Euclidean metric
ds? =dn® +n°[dy® +sin® y(d0* +sin® &d¢*)]
Tunneling probability factor

2
o 1( oD
B:SE :27[2_[0 773d77|:2(877j +U((D):|

The Euclidean field equations boundary conditions
' i dd

q)||+377 (D': dU Ilmq)(n):cDF’d—LFO:O
]7 dq) n—>0 77

“Particle” Analogy :
The motion of a particle located at position phi at time eta

“Particle” moving in the potential —U, with the F
damping force inversely proportional to time ®:

O =7 +17)

-U

@,

At time 0, the particle is released at rest
(The initial position should be chosen such that)
at time infinity, the particle will come to rest at P,




Thin-wall approximation

potential

PF

-U

U (D) =§(c1>2 _p?)? —%(d)—b)

L]

(Epsilon : small parameter)

/

B is the difference B — SE — Sl';

In this approximation
B= Bin + BwaII + Bout
Outside the wall

By = Se(Pr) =S (P) =0

()

P,

Large 4dim. spherical bubble
with radius R and thin wall



In the wall

B,., =27°n°S,,

wall

where S,=]," U @)-U(®)]do

inside the wall B = —172'27748

In

the radius of a true vacuum bubble
n=3S,/¢
the nucleation rate of a true vacuum bubble
277°S?
253

BOZSE:



Evolution of the bubble

The false vacuum makes a guantum tunneling into a true vacuum
bubble at time t = 0, described by
O(t=0,%) = D(z =0, X)
0
ot
Afterwards, it evolves according to the classical equation of motion

Note that ® is a function of n

CD(tzO,;)zo. (772 :Tsz)

oD ‘

0%t

+VO=U"(D)

The solution (by analytic continuation)

O(t, X) = O = (| X [2 ~t2)"2)

Note : 1) Analytic continuation in the presence of gravity is nontrivial.
2) The evolution of the (bubble or domain) wall can also be studied
using the junction conditions



2. Bubble nucleation in the Einstein gravity
S. Coleman and F. De Luccia, PRD21, 3305 (1980)

Action ul
R 1 |
S = J-\/Ed4X|:———Va(DVa(D—U ((D):|+ Sboundary \ /
2Kk 2 \‘ L f.-’
lI\-"l / U -Nz’;
N
Einstein equations . .

1
R, - 9, R=«T, T,= [vﬂcpvucp ~ 9, (%V“CDVQCD +U )J

Bubble nucleation rate
['/V = Aexp[-B/ #]

O(4)-symmetric Ansatz : Rotationally invariant Euclidean metric

ds’ =dn® + p*(n)[d x° +sin® y(d&* +sin’ d¢*)]

The Euclidean field equations boundary conditions
0, 3P AU kp® 1 D2 o) =, 9% 0
"+ P'= D pP=1+—(=d"”-U) ULLmX) "dp "

(Scalar 'gq. of motion & Einstein eq.) )



D(n)

FIG. 2: The typical vacuum bubble profile with the wall in the middle. At 5 = 0 the starting
point is somewhere near ®r. stays there for a time and goes to ®p and stays at that point from

thereafter.



(i) From de Sitter to flat spacetime

the radius of a true vacuum bubble p=——"
1+ (71 2A)?
where A =(xe/3)™?
BO
the nucleation rate of a true vacuum bubble [ (20T

Note : 1) p bar less than n and less than or equal to A,
2) Transition probability increases. (B < B, )

(ii) From flat to Anti—de Sitter spacetime

the radius of a true vacuum bubble /_?= _77
1—(n/ 2A)*

P

[L— (7 2A)?T

the nucleation rate of a true vacuum bubble

Note : p bar larger than n . Transition probability decreases. (B > B, )
For small enough €, false vacuum can be stable



(iii) the case of arbitrary vacuum energy
S. Parke, PLB121, 313 (1983)

2

b
comn [l ]

/122 =[3/x(U¢ +U;)]

*Evolution of the bubble

- via analytic continuation back to Lorentzian time
Ex) de Sitter —> de Sitter : A. Brown & E. Weinberg, PRD 2007



Cases for True & False Vacuum Bubble :

i True Vacuum Bubble

\ N ; AdS € AdS
N AN

MSE RS
Uo ' dS €> M

“dS €>dS
D1 O

dalse Vacuum Bubble




False—to—true

True—to—false

De Sitter — De Sitter O O
De Sitter — Flat O ?
Dg Sltter. — 0O ?
Anti—de Sitter
Flat — Anti—de Sitter O ?
Anti—de Sitter — Anti— 0 ?

de Sitter




True & False Vacuum Bubbles

(x)Lee, Weinberg, PRD

() exists in
(1)non—minimally coupled gravity
(W.Lee, BHL, C.H.Lee,C.Park, PRD(2006))

Anti de Sitter — de Sitter

om) 7] i p(n)

FIG. 8. The false vacuum bubble profile:
& and £ in case 3. Here £ is taken to
are (a) solid curve: € = 0.01 and
€ =002 and £ =0.414; {c) dashed cur
0.508.

b) dot urve:
ve: € =003 and £=

FIG. 9. The evolution of 5(7) in case 3. The solid curve is the
solution of g with € = 0.01. In the region inside the bubble, p =
Asin, and outside the bubble, p = Az sithT:Jz—‘

False— True—-to- _
to-true | false (x) | OFIN
(True vac. | (False vac. | (2)Brans—Dicke type theory
Bubble) Bubble) (H.Kim,BHL,W.Lee, Y.J. Lee, D.-
. . H.Yoem, PRD(2011))
De Sitter — de Sitter O O (%) R L
5= f v@h—[ﬁ — VDV, d — ~£RD? — UHIH}
Flat — de Sitter O O py S i
Anti de Sitter — de Sitter @) O o+ P — R, = % |
i (
Anti de Sitter — flat O O )
p? =14+ 0 f{:‘?‘bz j(’]ﬁ_qﬂ — U).
Anti de Sitter — Anti de Sitter @) @) ST SRS
Condition: ¢r,a>2a
yi

Dynamics of False Vacuum Bubble :

Can exists an expanding false vacuum

bubble inside the true vacuum

BHL, C.H.Lee, W.Lee, S. Nam, C.Park,
PRD(2008) (for nonminimal coupling)

BHL, W.Lee, D.-H. Yeom, JCAP(2011)
(for Brans—Dicke)




2.1 True vacuum bubbles (with the de Sitter (dS) exterior geometry)

Ug =0 Large background (Parke): |ifuaRiiaaniieyl!

MG - 13D

D — [1 +2(£)? + [%)4] . X2 = [3/k(Us + Ur)] and A2 = [3/k(Ur — Ur)]

pim) pi)
: 2B, 8U
[EiDs-0s] #w [Gabs.os] #m S © - — Y pi2
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Figure 1-A

[4-1) D5 .05 e

Ur — Ur < 3kS52/4

Small background :

(4-2) DS -D3 e ‘ (4-3) DS - DS

=)

A —— 2B,[{1 + (£)*} — D]
BHL & W. Lee, CQG (2009) L TS i .

[(F)H{(52)* —1}DV2]

Figure 1: The schematic dingram for 12 possible types of trus vaomm bubbles or matching with the thin-wall
approximation. The § indicates the location of the wall. All the nine eases in Figure 1-A are possible scluticons.
The cases (4-1) - (4-3) in Figure 1-B don’t have the stationary point in the acticn, allowing no solutions.

the size of the background space (or bubble) will be called “large'" (or “small'' )
if its size is larger than half of the de Sitter space itself.

By redefining n — nmax — N we get False Vacuum Bubbles with finite geometry.



2-2. vacuum bubbles with finite geometry BHL. C.H. Lee. W.Lee & C.Oh.
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Figure 3: dS-AdS cases. ¢ = 0.04, & = 0.1, and Uy = —0.04 for for top figure. € = 0.04, & = 0.3, and
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Figure 5: Flat-AdS and AdS-AdS cases. € = 0.05, k = 0.7, and Uy = —0.09868 for flat-AdS case. € = (
K = 0.7, and Uy = —0.05 for AdS-AdS case.

Figurc 4: ds-fat eases. € = 004, k = 0.1, and Uy = I for for top figure. € = 0.04, £ = 0.3, and

Up = 0.0077 for for bottom figure.



3 Tunneling between the degenerate vacua

4 Z2-symm. with finite geometry bubble -U

Boundary condition (consistent with Z2—-sym.

dd
n=0 = 0, n=r =0, —
JO|]' 0 p JO| I=TNmax 3 d?;‘

dd
=0, and il =0
j-}=|:l {i?] nM=1max

— in de Sitter space.

The numerical solution by Hackworth and Weinberg.
The analytic computation and interpretation :
(BHL & W. Lee, CQG (2009))

This tunneling is possible

due to the changing role of the second term
in Eucildean equation from damping to
accelerating during the phase transition.




dS - dS

AdS—-AdS

T T T T T T T
1k F] M 4D 2 [13 1]
==
]
=4
21 ’
PDT Sop gF<0
18
104
o T T T T T T
[ =] 0 -] T
n
&l 4
30 4
p(m)
20+
o)
:l T T T T T T
o i 20 an 40 ] (-]

& I-"F
II L
L |
| L oF
i |
(M) oo | .- . p
| [
D5 | -
|
|'I g
=10 —
H © it i ¢ = i T o o ] - - *
n
1.5 ||I - ,r_
] I| - |
®(n) o1 | Y /|
] #
| @ [
5] | e | |
f |
J - i
o
o 22 n 2 A ) T : *n " =
n

r -
{ ™ r

L II| . ]

I I'll\"'- |

o) 1 | X8 -

II [ f

ot | - I |I
- i
,: J
. 5:] pA - q - -

B.-H. L, C. H. Lee, W. Lee & C. Oh, PRD82 (2010)



Euclidean Solutions

(1) Instanton solution (symmetric double-well potential)

V(o) The action has the same value as the action
obtained in connection with the WKB
calculation of the splitting in the energies of the
two lowest levels for the double well potential.

vV a

*

Ej: — + Iff’_'gE
(2) Bounce solution (asymmetric double-well potential)

Decay of the background vacuum state or the

U(o) .
\/ nucleation of a vacuum bubble
'\/X”. |" _ a
F, = — —|K ‘f,'_bE
2 2

ot L o



Oscillaing solutions - between flat-flat degenerate vacua ( & = D.EI)

. 32 . :
B.-H. Lee, C. H. Lee, W. Lee & C. Oh, arXiv:1106.5865 3pl —o |
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This type of solutions is possible only if gravity is taken into account.



2.0scillaing solutions - between dS-dS degenerate vacua
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3.0scillaing solutions - between AdS-AdS degenerate vacua
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The phase space of solutions
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{iii)
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-0.08
0.0

The y-axis represents no gravity.
the notation (n_min, n_max), where n_min means the minimum number of
oscillations and n_max the maximum number of oscillation 36



KU,

effect

no gravity i TYp:
4: solution
Eh 1

: no solutions
L dS
InCréasing I.
another
type —

AdS

KU, increasing

ydl

(k=10)

the schematic diagram of the phase space of all solutions including another
type solution and the number of oscillating solutions with different ks.

The left figure has k = 0 line indicating no gravity effect. In the middle area
including the flat case, n_min and n_max are increased as kK and kUo are

decreased. The tendencies are indicated as the arrows. In the
left lower region, there exist another type solution.

The right figure shows n_min and n_max are changed in terms of kUo and k.
As we can see from the figure, n_max and n_min are increased as kU0 is
decreased.

37



4. Black Hole Pair creation by a domain wall
Introduction Gwak, B.—H. L., W. Lee, Minamitsuji, arXiv:1101.5748

The system with a domain wall with Z_2 symmetry by
(1) cut—and—paste method Caldwell, Chamblin and Gibbons,PRD(1996)
(2) by the instanton solution
Hackworth and E. J. Weinberg, PRD (2005);
B.—H. L. and W. Lee, CQG(2009);
B.-H. L, C. H. Lee, W. Lee, and C. Oh, PRD 82, 024019 (2010)].

the location of black holes



Application to the braneworld cosmology

After the nucleation, the domain wall (that may be interpreted as our
braneworld universe) evolves in the radial direction of the bulk spacetime.

= l’u'll-_:l. a? 4+ Via)=10

The equation becomes

_ _ ; 5 A = 3A : the effective cosmological constant.
a 4 1 _ i)\ n 2my g mass term ~ the radiation in the universe
a2 a2 3 a’ a®’ | charge term ~ the stiff matter

with a negative energy density.

Cosmological solutions

the expanding domain wall (universe) solution (a > r#,+).
approaching the de Sitter inflation with A, since the contributions of the
mass and charge terms are diluted.

contracting solution (a < r#,+) : the initially collapsing universe.
The domain wall does not run into the singularity & experiences a bounce
since there is the barrier in /(&) because of the charge g.




5. Summary and Discussions

® We reviewed the formulation of the bubble.
® False vacua exist e.qg., in non—minimally coupled theory.
® VVacuum bubbles with finite geometry, with the radius & nucleation rate

® The tunneling of degenerate vacua in dS, flat, & AdS.
Obtained the transition rate and the radius of a bubble.

® EXxists Oscillating solutions; can make the thick domain wall.
® Similar analysis for the Fubini instanton under investigation

® Physical role and interpretation of many solutions are still not clear.

® Studied a magnetically charged BH pair separated by a domain wall
in the 4 or 5—dimensional spacetime with a cosmological constant.

® The application to the braneworld cosmology has been discussed.

® Can it be another alternative model for the accelerating expanding universe?



Thank yOU!
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