Recent Progress and Future Prospects of CMB Lensing

Toshiya Namikawa (The University of Tokyo)

Dark Matter, Dark Energy and Matter-Antimatter Asymmetry @ Taiwan, Dec. 28-31, 2012

Contents

1. Introduction

2. CMB Lensing as a Cosmological Probe

3. How to Measure Lensing Effect

4. Recent Progress and Future Prospects

5. Summary

1. Introduction

Cosmic Microwave Background (CMB)

Precise measurements of CMB fluctuations

The energy components of Universe is well described by flat ΛCDM model

Cosmology can now focus on more advanced and fundamental issues !

- **dark energy**
- ✓ mass of neutrinos
- ✓ cosmic strings

- ✓ dark matter
- ✓ primordial gravitational waves
- ✓ primordial non-Gaussianity

Cosmological probes

Observations

✓ CMB temperature/ polarizations

- ✓ Type-Ia Super Novae
- ✓ Baryon Acoustic Oscillations
- ✓ Cluster abundance
- ✓ 21cm brightness temperature
- ✓ Weak Lensing

Compared to other observables, weak lensing is ...

Sensitive to both geometry and density fluctuations

✓ for CMB lensing, the properties of source (CMB) is well known

CMB Lensing

• **CMB Lensing = distortion of spatial pattern of CMB anisotropies**

Lensed anisotropies

Lensing potential

$$\widetilde{\Theta}(\vec{n}) = \Theta\left(\vec{n} + \vec{d}(\vec{n})\right)$$

Gravitational potential

$$\nabla \left(-2 \int_0^{\chi_s} d\chi \frac{\chi_s - \chi}{\chi \chi_s} \psi(\eta_0 - \chi, \chi \vec{n})\right)$$

Angular power spectrum

$$\widetilde{\Theta}(\vec{n}) \implies \widetilde{\Theta}_{\ell m} = \int d\vec{n} Y_{\ell m}^*(\vec{n}) \widetilde{\Theta}(\vec{n}) \implies \langle \widetilde{\Theta}_{\ell m} \widetilde{\Theta}_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} \tilde{C}_{\ell}^{\Theta \Theta}$$

Harmonics space

Angular power spectrum

(Lewis&Challinor'06)

Lensing effect becomes dominate at Silk damping scale: ℓ > 2000 (~ few arcmin)
 → High angular resolution is required

Lensed polarizations anisotropies

Lensed polarizations anisotropies

2. CMB lensing as a cosmological probe

Gradient / Curl

> Application of curl-mode reconstruction

• Probing, e.g., cosmic strings, GWs, magnetic fields ...

• Check for systematics

Dark energy/ Massive Neutrinos

Dark energy, massive neutrinos (see, e.g., Hu'01, Lesgourgues&Pastor'06)

Density perturbations \longrightarrow Gravitational potential $\longrightarrow \phi(\vec{n})$

gradient mode

Primordial GWs/ Cosmic strings

Other motivations to measure CMB lensing

CMB Lensing generates **B-mode** and secondary non-Gaussianity \checkmark

noise for primordial GWs detection

noise for primordial non-Gaussianity

e.g., Knox+'02, Kesden+'02, Smith+'09

3. How to measure lensing effect

How to measure lensing effect

- Angular power spectrum
 - ✓ useful to see whether the observed CMB anisotropies are lensed or not

- CMB lensing reconstruction = estimate lensing potentials
 - ✓ useful for cross-correlation studies with, e.g., cosmic shear, galaxy clustering, etc

Minkowski Functionals (e.g., Schmalzingr+'00) may be another possible method to measure lensing effect

CMB lensing reconstruction

Essence of lensing reconstruction (Review: Hanson+'10)

 $\hat{\phi}_L^{(C)} = \hat{\phi}_L^{(S)} - \langle \hat{\phi}_L^{(S)} \rangle \rightarrow$

✓ Lensing induces mode coupling in the temperature anisotropies

$$\widetilde{\Theta}_{\vec{\ell}} = \Theta_{\vec{\ell}} - \int d^2 L \left(\vec{\ell} \cdot \vec{L}\right) \phi_{\vec{L} - \vec{\ell}} \Theta_{\vec{L}} - \int d^2 L \left(\star \vec{\ell} \cdot \vec{L}\right) \varpi_{\vec{L} - \vec{\ell}} \Theta_{\vec{L}}$$

✓ Lensing potentials would be estimated from mode coupling $\tilde{\Theta}_{\ell} \tilde{\Theta}_{\vec{L}}$ ($\ell \neq L$)

(Maximum-Likelihood) Estimator (e.g., Hu&Okamoto'02; Hirata&Seljak'03a,b; Hanson+'09)

Mean-field bias: induced by non-lensing effect (mask, inhomogeneous noise, beam asymmetry, ...)

$$\widehat{\phi}_{L}^{(S)} = \int d^{2}\ell \ F_{\ell,L}^{\phi} \overline{\Theta}_{\ell} \overline{\Theta}_{\vec{L}-\vec{\ell}} \qquad \left(\text{For idealistic case: } \overline{\Theta}_{\ell} = \frac{\widetilde{\Theta}_{L}}{C_{L}^{\Theta\Theta}} \right)$$

weight function for unbiased estimator and for minimizing contributions from primary CMB (more robust estimator is proposed in TN+'12)

Lensing effect is estimated through mode coupling of lensed CMB

Estimating lensing power spectrum

- ✓ For cosmology, we are interested in $C_{\ell}^{\phi\phi}$ and $C_{\ell}^{\varpi\varpi}$ rather than ϕ and ϖ
- $\checkmark \text{ Currently, } C_{\ell}^{\phi\phi} \text{ and } C_{\ell}^{\varpi\varpi} \text{ are estimated from } \widehat{\phi} \text{ and } \widehat{\varpi} \quad (\text{e.g., Kesden+'03, Hanson+'11})$

$$\hat{x}_{L} = \int d\vec{\ell} \ F_{\ell,L}^{\chi} \ \overline{\Theta}_{\ell} \overline{\Theta}_{\vec{L}-\vec{\ell}}$$

$$\longrightarrow \langle |\hat{x}_{L}|^{2} \rangle = \int d\vec{\ell}_{1} \int d\vec{\ell}_{2} \ F_{L,\ell_{1}}^{\chi} F_{L,\ell_{2}}^{\chi} \langle \overline{\Theta}_{\ell_{1}}^{*} \overline{\Theta}_{\vec{L}-\vec{\ell}_{1}}^{*} \overline{\Theta}_{\ell_{2}} \overline{\Theta}_{\vec{L}-\vec{\ell}_{2}} \rangle$$
decomposed into disconnected/connected part

$$\langle |\hat{x}_{L}|^{2} \rangle = N_{\ell}^{x,(0)} + C_{\ell}^{xx} + N_{\ell}^{x,(1)} + N_{\ell}^{x,(2)} + \cdots$$
connected part
disconnected part
(Gaussian bias)
$$O(C_{\ell}^{xx}) \quad O([C_{\ell}^{xx}]^{2})$$

(more robust estimator is proposed in TN+'12)

Lensing power spectrum is estimated through trispectrum of lensed CMB

Estimating lensing power spectrum

Bias contributions

(Hanson+'11)

✓ In practical cases, the bias terms should be robustly estimated

Short summary of lensing reconstruction

History

- Reconstruction technique
 - Basic ideas for quadratic estimator

(e.g., Seljak'97; Seljak&Zaldarriaga'98; Hu&Okamoto'02; Okamoto & Hu'03; Lewis+'11)

- Maximum-likelihood estimator (Hirata&Seljak'03a,b; Hanson+'09)
- Curl mode estimator (Cooray+'05; TN, Yamauchi & Taruya+'12)

• Estimating lensing power spectrum, C_{ℓ}^{xx}

(e.g., Kesden&Cooray'03; Cooray&Kesden'04; Hanson+'10; TN,Hanson&Takahashi'+12)

 Method in practical cases (masking, inhomogeneous noise, etc.) (e.g., Carvalho&Tereno'11; Hanson+'11; TN, Hanson & Takahashi+'12)

Future

- Method in practical cases for polarization
- Importance of higher-order statistics

4. Recent Progress and Future Prospects

Current status (gradient mode)

- Recent works detect lensing signals from CMB maps alone
 - ✓ WMAP + Atacama Cosmology Telescope (ACT)
 - ✓ WMAP + South Pole Telescope (SPT)

(Das+'11)

(van Engelen+'12)

Cross correlations with galaxies/quasars are also detected

Smith+'07, Hirata+'08, Bleem+'12, Sherwin+'12

Current status (curl mode)

• An example of cosmological implications from curl mode

✓ With ACT data, parameter regions which is not ruled out from $C_{\ell}^{\Theta\Theta}$, e.g., $G\mu \sim 10^{-9}$ with P ~ 10^{-5} , seems to be ruled out

Future prospects

 Lensing signals would be measured with enough precision to probe, e.g., dark energy and massive neutrinos

Cosmological applications of curl mode

TN+'12

✓ **Primordial GWs** --- even r=0.1 would be difficult to detect.

Cosmic strings --- can be explored with upcoming experiments
 (This would be a new probe of cosmic strings from CMB)

Summary

• CMB lensing as a cosmological probe

- ✓ CMB lensing has sensitivity to probe massive neutrinos, dark energy, etc.
- Measurement of CMB lensing is also important to probe primordial GWs and non-Gaussianity

How to measure lensing effect

- ✓ Lensing effect can be measured from mode coupling induced by lensing
- ✓ Lensing power spectrum can be also measured from lensing estimator

Near future

- Recent CMB lensing detection is from temperature maps, but polarization data from upcoming experiments would significantly improve the current constraints from CMB lensing
- Practical methods of lensing measurement for polarization are required in near future

Minkowski Functionals

Minkowski Functionals

Topological information on two-dimensional sphere is characterized by the following three quantities (Minkowski Functionals)

- ✓ total area
- ✓ total length
- ✓ Euler number

Minkowski Functionals include contributions from higher-order correlations (skewness, kurtosis...)

Future prospects

• Test for modified gravity e.g., Calabrese+'09

Minkowski Functionals

Bias-hardened estimators (1)

mean-field bias

Consider distortion by an arbitrary function, $\epsilon(n)$, in the following form

$$\widetilde{\Theta}^{obs}(\vec{n}) = (1 - \epsilon(\vec{n}))\widetilde{\Theta}(\vec{n})$$
 ($\epsilon_{\ell} \ll 1$)

We first propose a lensing estimator which is free from uncertainty in $\epsilon(n)$

(1) define ϵ estimator: $\hat{\epsilon}$

(2) $\hat{\epsilon}$ estimator also includes a mean-field bias, so we define a quantity by combining $\hat{\epsilon}$ and $\hat{\phi}$ so that mean-field bias vanishes

$$\hat{\phi}_{L}^{(BR)} = \frac{\hat{\phi}_{L}^{(S)} - R_{L}^{\phi\epsilon} \hat{\epsilon}_{L}^{(S)}}{1 - R_{L}^{\phi\epsilon} R_{L}^{\epsilon\phi}}$$

The above estimator reduces mean-field bias from ϵ_{ℓ} , but there are still other possible sources of mean-field bias, e.g., uncertainty in Cl's

This estimator would be useful as a cross-check of the standard method

Bias-hardened estimators (2)

Gaussian bias

✓ Current methods

vanishing the bias by cross-correlating different multipoles

(Hu'01; Das&Sherwin'11)

✓ Our method

$$\langle |\hat{x}_{L}|^{2} \rangle_{D} = 2 \int d\vec{\ell}_{1} \int d\vec{\ell}_{2} F_{L,\ell_{1}}^{x} F_{L,\ell_{2}}^{x} \overline{C}_{\ell_{1},\ell-\ell_{2}} \overline{C}_{\ell-\ell_{1},\ell_{2}} \quad (\overline{C}_{L_{1},L_{2}} \equiv \overline{\Theta}_{L_{1}} \overline{\Theta}_{L_{2}})$$

$$\langle |\hat{x}_{L}|^{2} \rangle_{D} = 2 \int d\vec{\ell}_{1} \int d\vec{\ell}_{2} F_{L,\ell_{1}}^{x} F_{L,\ell_{2}}^{x} [2\overline{C}_{\ell_{1},\ell-\ell_{2}} \overline{\Theta}_{\ell-\ell_{1}} \overline{\Theta}_{\ell_{2}} - \overline{C}_{\ell_{1},\ell-\ell_{2}} \overline{C}_{\ell-\ell_{1},\ell_{2}}]$$

The above estimator is derived with maximum likelihood approach
 Less sensitive to the bias in C

 Less sensitive to the bias in C

e.g.,
$$\overline{C}_{L_1,L_2} \rightarrow \overline{C}_{L_1,L_2} + \Sigma_{L_1,L_2}$$

Bias-reduced estimator

(2) improve "standard" estimator to remove "mean field"

$$\langle \hat{\phi}_{\vec{\ell}} \rangle = R_{\ell}^{\phi M} M_{\ell} \qquad \longrightarrow \qquad \langle \hat{\phi}_{\vec{\ell}}^{BR} \rangle = 0$$

We consider "lensing" and "mask" estimators:

$$\begin{split} \widehat{M}_{\ell} &= N_{\ell}^{MM} \int d\vec{L} \frac{f_{\ell,L}^{\phi} f_{\ell,L}^{M}}{2\tilde{C}_{\ell}^{\Theta\Theta} \tilde{C}_{L}^{\Theta\Theta}} \\ F_{\ell,L}^{M} &= \vec{\ell} \cdot \vec{L} \tilde{C}_{L}^{\Theta\Theta} + \vec{\ell} \cdot (\vec{\ell} - \vec{L}) \tilde{C}_{|\vec{\ell} - \vec{L}|}^{\Theta\Theta} \\ f_{\ell,L}^{M} &= [\tilde{C}_{L}^{\Theta\Theta} + \tilde{C}_{|\vec{\ell} - \vec{L}|}^{\Theta\Theta}] \\ R_{\ell}^{ab} &= N_{\ell}^{aa} \int d\vec{L} \frac{f_{\ell,L}^{a} f_{\ell,L}^{b}}{2\tilde{C}_{\ell}^{\Theta\Theta} \tilde{C}_{L}^{\Theta\Theta}} \\ R_{\ell}^{ab} &= R_{\ell}^{M\phi} \phi_{\ell} + M_{\ell} \\ N_{\ell}^{aa}]^{-1} &= \int d\vec{L} \frac{f_{\ell,L}^{a} f_{\ell,L}^{a}}{2\tilde{C}_{\ell}^{\Theta\Theta} \tilde{C}_{L}^{\Theta\Theta}} \end{split}$$

we define a new estimator

Since

 $\langle \hat{\phi}_\ell \rangle$

 $\langle \widehat{M}_{\ell} \rangle$

$$\hat{\phi}_{\ell}^{BR} = \frac{\hat{\phi}_{\ell} - R_{\ell}^{\phi M} \hat{M}_{\ell}}{1 - R_{\ell}^{\phi M} R_{\ell}^{M\phi}}$$

Appendix: Filter functions

"standard" quadratic estimator

• Our "bias-reduced" estimator

$$F_{\vec{\ell},\vec{L}}^{\prime \phi} = \frac{F_{\ell,L}^{\phi} - R^{\phi M} F_{\ell,L}^{M}}{1 - R^{\phi M} R^{M \phi}}$$

$$R_{\ell}^{ab} = N_{\ell}^{aa} \int d\vec{L} \frac{f_{\ell,L}^{a} f_{\ell,L}^{b}}{2\tilde{C}_{\ell}^{\Theta \Theta} \tilde{C}_{L}^{\Theta \Theta}}$$

$$\begin{cases} f_{\ell,L}^{\phi} = \vec{\ell} \cdot \vec{L} \tilde{C}_{L}^{\Theta\Theta} + \vec{\ell} \cdot (\vec{\ell} - \vec{L}) \tilde{C}_{|\vec{\ell} - \vec{L}|}^{\Theta\Theta} \\ f_{\ell,L}^{\overline{\varpi}} = (\star \vec{\ell}) \cdot \vec{L} \tilde{C}_{L}^{\Theta\Theta} + (\star \vec{\ell}) \cdot (\vec{\ell} - \vec{L}) \tilde{C}_{|\vec{\ell} - \vec{L}|}^{\Theta\Theta} \\ f_{\ell,L}^{M} = [\tilde{C}_{L}^{\Theta\Theta} + \tilde{C}_{|\vec{\ell} - \vec{L}|}^{\Theta\Theta}] \end{cases}$$

Noise spectrum (Gaussian bias)

• The variance of curl-mode estimator is similar to that of gradient-mode

Mean-Field Bias

• An example of mean-field bias

 Mean-field bias is usually estimated with Monte Carlo, but the underlying fluctuations should be perfectly known

✓ We first define an estimator for mask field $\hat{\epsilon}$, and then propose an estimator by combining $\hat{\phi}$ with $\hat{\epsilon}$ so that mean-field bias vanishes

Application of curl mode

We consider two sources of curl mode: primordial GWs and cosmic strings

See Yamauchi, TN & Taruya '12 for details of our model

- We consider straight string, randomly oriented
- Motion of strings is determined by velocity-dependent one scale model which depends on string tension, $G\mu$ and intercommuting probability, P

with probability, P

if $P \ll 1$, cosmic strings would not be generated by field theoretic inflation

• Lensing is induced by metric perturbations from strings in our line-of-sight

Future prospects (cross correlation)

• Expected 1σ constraints on dark energy and massive neutrinos

 Cross-correlation signals with other probes (e.g., cosmic shear) would be powerful for robust constraints