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Evidence of Cosmic Acceleration

SNe la, CMB, BAO are converging
* Cosmic acceleration
- Existence of Dark energy

The Union2.1 compilation of 580 SNe KA

[Suzuki et al.(2012)]



How to Explain Cosmic Acceleration

- Cosmological constant: w=-1
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How to Explain Cosmic Acceleration

* Dark energy: w#-1
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How to Explain Cosmic Acceleration

- Cosmological constant: w=-1

* Dark energy: w#-1
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 Modificatoin of gravity on cosmological scales
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Local Gravity Constraints

* In MG, an extra scalar field d mediates fifth-force.
—deviation from GR on large-scales.

- Local gravity tests strongly constrain gravity.
- €.9. Yppn-1=(2.1£2.3)x1075 by time-delay [Bertotti et al. (2003)]

* Screening mechanisms for ¢ are needed to evade
local gravity constraints in modified gravity!




N Modified Gravity

* » Motivation: Cosmic acceleration

General modification
{DGP, Galileon, Massive Gravity...} <|Horndeski's theory

* This® - cosmic accelerate,
mediate fifth force on large scales,
* must be screened on small scales.[Vainshtein 1972]
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Observational Tests of Modified Gravity
Especially Focus on Vainshtein Screening

Solar-system tests (time delay etc.)

@ Galaxy (Lensing & Velocity dispersion)

o @ o




Observational Tests of Modified Gravity

Solar-system tests (time delay etc.) _ _
T Screening radius
é Strict constraint

[Nicolis, Rattazzi & Trincherini (2009)]
& ® Galaxy (Lensing & Velocity dispersion)

Strong constraint

[Sjors & Mortsell (2012)]

. Clusters of galaxies ry~10Mpc~r
= [Wyman (2011); TN & Yamamoto (2012)]

virial

r,~10Mpc that are very well measured by cluster
surveys. Hence, it should be possible to discover or
constrain this effect by cluster surveys.




Galaxy Cluster as a Probe of Modified Gravity
A variety of cluster observations

* X-ray

* Sunyaev-Zeldovich

» Gravitational lensing

Theor.> Lensing potential A®, = A(® + U) /2
AD, o<rdp’'d” —deviation from GR at r~r,,

Obs.> Large amount of data for lensing profile will




Procedure

* Work in General framework (Horndeski’s theory)

* Derive a condition that the Vainshtein screening
work to study spherically symmetric configuration

* Demonstrate how an effect of ¢ appears on
lensing signal A®, in the case that the Vainshtein
screening works in modified gravity models

* Test modified gravity models by comparing some
model predictions with cluster lensing data

Top-down approach
—Construction a viable model/ getting its hint
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Galileon-type Modified Gravity

* Motivation: Decoupling limit of DGP braneworld model
‘Lint i ¢ gb‘ : higher-derivative term

where ¢ : scalar field, X = —%(8@2

enjoy Galileon shift symmetry: @M¢ N @H¢ + ¢,

— | + Cosmic acceleration
- Up to 2nd order derivatives in EOM
- Vainshtein screening i

DGP] Dvali, Gabadadze & Porrati 2000
DLofDGP] Luty, Porrati, Rattazzi 2003; Nicolis, Rattazzi 2004
‘Galileon] Nicolis, Rattazzi & Trincherini 2009




Vainshtein Screening in Cubic Galileon

1
L=Lor—X — 5X06+ Ly,

At r<<r,: Large kinetic term

<> Strong self-coupling
<~ Weak coupling to matter

@ (r) ocr™ < B (r) o

Screened<>Recover GR'!

»



Horndeski's Theory: General Modification
In D=4 dim. Up to 2nd order derivatives in EOM

S = /d4$\/—g[[, + L ] Minimally coupled to matter

£ =K (9, X)- 6
R + G4x X (field derivatives)

+Gs(0. )G V' 0"0

1
- Gsx x (field derivatives)

where GiX = an/aX 4 arbitrary functions of @, X

[Horndeski 1974] is equivalent to the Generalized Galileon
[Deffayet et al. 2011; Kobayashi, Yamaguchi, Yokoyama 2011]



Background Solution (Local Universe)
ds® = n,,dat dz”
® = @9 = const, Xog =0

Spherical symmetric perturbations produced by a
nonrelativistic matter (Galaxy Cluster)

ds® = —[142®(r)]dt* + [1-2V(r)]6;;dx" dz’
¢ = Po+p(r)

All the coefficients are evaluated at the background.




Static-Spherically Symmetric Configurations
Metric EOM:
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where six dimensionless parameters:
& M, 1, a, v, Bare functions of Ky, G345, Gax, Gux, Gg e

(cf. Vainshtein mechanism under considering background
evolution [Kimura, Kobayashi, Yamamoto ‘12])



Dimensionless parameters

Let us introduce six dimensionless parameters:
EI nl IJ'I al VI B




Quintic Scalar-Field Equation

Combining metric EOM and $EOM, we arrive at

P(z, A) := £A(r) + (g +362) 2 + [+ 6ag — 3BA(r)] 2

+ (v + 2a° + 46¢) 2° — 38%2° = 0

where we define
1 ¢ 1 M(r)
A —
‘ (T) MP1A3 87’('7“3

=N
both of which are dimensionless.

M(r) is the enclosed mass.




Scalar-Field Equation|ct. Shisa, Niz, Koyama, Tasinato ‘12]

| 1 M(r
* Solve v F%’ A = 3mas 87T(7“3)
P(z, A) := EA(r) + (g +362) 2w + [+ 6ag — 3BA(r)] 2

+ (v +2a° + 4B¢) 2° — 38°2° =0
for the inner region (A>>1) and the outer region (A<<1).

* Derive a condition under which the two solutions are
smoothly matched in an intermediate region.

X(r) A

Smoothly Matching > r




Outer Solution: Asymptotically Flat

* In the outer region (A<<1), there is always a
decaying solution, 26 A(r)
n + 682

~ Lf .—

Inner Solution: Vainshtein

* In the inner region (A>>1), we have a solution (§3>0):




Smoothly Matching of Two Solutions

In this case, P(x)=0 has
a single real root in
(x-,0) for any A>o.

The two solutions are
smoothly matched'!




Parameters Corresponding to Decoupling Limit of

Ghost-free Massive Gravity
L=Lgr + mghfw + O(hiy)

Massive Gravity = A sort of Galileon
|de Rham, Gabadadze & Tolley 2010]

Decoupling limit: M, —e0, m —0, A3=M ;m > =fixed.

g g

Corresponding to

2
e . Mpl Mp . Mp
K=0=G3, G4 = T + Mp1 + FQX’ Gy = —BFBX
in Horndeski’s theory.
4 Gux — Gsg = —]\Xgl&, Gsx = —Sjj\éplﬁ.

Wefoundn=pu=v=0, =1, a#0, 8#0
(Proxy theory of massive gravityl[de Rham & Heisenberg 2011])



The condition of smooth matching of the two solutions:

\/5+\ﬁ

a<00r—> 0.6

The region {a, B} which smoothly match the two solutions:

Boundary region

where the solutions
smoothly match.

Explore the observationally
allowed region {a, B} with
cluster lensing!
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Gravitational Lensing in Modified Gravity

* Geodesic equation

» Surface mass density Xg(r ) <x(r . )
T dZACD)
2D
ESO(/O dZ /\ r:\/ri+Z2

where lensing potential in modified gravity:

A3 [(ax? + 2027 + 2A) r?]

A@ — oC 111
+ Mp 972 AD <rdp'd

assuming 6p(r) as NFW profile.



Scalar field in modified gravity:

A, <"

A dip appears.

— — a=1, §=0.36

a=1.5, 8=0.8

— a=-1, g=1
Smoothly
matching
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Lensing potential in modified gravity:
A3 [(CM%Q'+'2ﬁkE3'+'2f4)7iﬂ/ — — a=1, §=0.36
272 a=1.5, §=0.8

—— a=-1, =1

A dip appears.




Lensing Potential of Galaxy Cluster

Mass map (shear) Surface mass density Zg(r

)

perp

M, =1.9% 1015Msun/h
cvir=’7.'7

N
{75
ety

E Umetsu et al. (2011)
~340 kpc

Over a wide range of radius

Small error of the lensing profile data [Umetsu et al. ’11

cf. Oguri et al. ’12]



Surface Mass Density in Modified Gravity

Parameters:{o, 3,A; p,, 1}
M, =1.5%1015(h1M,,,) (A3=M;/(0.02/H,)?, p,, r. fixed)

—— a=1, B=0.36
a=1.5, =0.8

——— a=-1, f=1 ?(e\\

I Umetsu et al. (2011)

A dip appears at r~r:=(r,My /A3)*3in a typical case.
—This allows us to put constraint.



Surface Mass Density in Modified Gravity

Parameters:{o, 3,A; p,, 1}
M, =1.5%1015(h1M,,,) (A3=M;/(0.02/H,)?, p,, r. fixed)

" oy

Cvir= X?

—— GR o

\ .
—— a=1, =036+~

——— a=-1, =1 ?(e\\

I Umetsu et al. (2011) 00 500] 00

An origin of the dip: X'(<>¢")
A dip appears at r~r:=(r,My /A3)*3in a typical case.
—This allows us to put constraint.



Summary & Conclusion

* Modified gravity by an ¢
* Motivation: Cosmic acceleration
* With the screening mechanism

* We demonstrate how an effect of $ on AD,
appears in General framework (Horndeski’s
theory). A dip appears!

* This allows us to put a constraint on modified
gravity model with lensing profile of galaxy cluster.
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