13:30-, Dec. 29, 2012

Testing modified gravity with cluster lensing

Tatsuya Narikawa (RESCEU, U-Tokyo)

Based on TN & K. Yamamoto, JCAP 1205, 016 (2012) [arXiv:1201.4037]; TN, T. Kobayashi, D. Yamauchi & R. Saito, work in progress.

3rdInternational Workshop on Dark Matter, Dark Energy, Matter-antimatter Asymmetry

暗物質、暗能量及物質反物質

Outline

- Introduction & Motivation
 - Cosmic Acceleration [Sami's talk]
 - Recent Progress of Modified Gravity [*]
 Theoretical: Screening/General Framework[Kase's talk]
 Observational: Galaxy Cluster Surveys
- Spherical Symmetric Configuration in General Modification (Horndeski's Theory)
- Cluster Lensing Signal in Modified Gravity
- Summary & Conclusion

[*] X. Zhang; Bamba; Nojiri; Matsumoto; C.C. Lee; Saridakis; Ong; Wu; Ni; ...

Evidence of Cosmic Acceleration

How to Explain Cosmic Acceleration

• Cosmological constant: w=-1

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2}T_{\mu\nu}$$

How to Explain Cosmic Acceleration

• Dark energy: w≠-1

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R =$$

$$= \frac{1}{M_{\rm Pl}^2} T_{\mu\nu} + \frac{1}{M_{\rm Pl}^2} T_{\mu\nu}^{(\phi)}$$

How to Explain Cosmic Acceleration

- Cosmological constant: w=-1
- Dark energy: w≠-1

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2}T_{\mu\nu} + \frac{1}{M_{\rm Pl}^2}T_{\mu\nu}^{(\phi)}$$

Modification of gravity on cosmological scales

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + ? = \frac{1}{M_{\rm Pl}^2}T_{\mu\nu}$$

The mystery of cosmic acceleration suggests that there is new gravitational physics on large scales.

Local Gravity Constraints

- In MG, an extra scalar field ϕ mediates fifth-force. \rightarrow deviation from GR on large-scales.
- Local gravity tests strongly constrain gravity.
- e.g. γ_{PPN}-1=(2.1±2.3)×10⁻⁵ by time-delay [Bertotti et al. (2003)]
- Screening mechanisms for ϕ are needed to evade local gravity constraints in modified gravity!

[Cassini spacecraft]

Modified Gravity

Introduce an additional φ

{DGP, Galileon, Massive Gravity... } < Horndeski's theory

General modification Horndeski's theory

- This ϕ cosmic accelerate,
 - mediate fifth force on large scales,
 - must be screened on small scales.[Vainshtein 1972]

Galaxy (Lensing & Velocity dispersion)

Clusters of galaxies

Galaxy Cluster as a Probe of Modified Gravity A variety of cluster observations

- X-ray
- Sunyaev-Zeldovich
- Gravitational lensing

Theor.> Lensing potential: $\triangle \Phi_+ \equiv \triangle (\Phi + \Psi)/2$ $\triangle \Phi_+ \propto r \phi' \phi'' \rightarrow deviation from GR at r~r_v$

Obs.> Large amount of data for lensing profile will be provided by Subaru/Hyper Suprime-Cam (HSC). Over a wide range of radius/ Small error of lensing profile data

Procedure

- Work in General framework (Horndeski's theory)
- Derive a condition that the Vainshtein screening work to study spherically symmetric configuration
- Demonstrate how an effect of φ appears on lensing signal $\Delta \Phi_{\star}$ in the case that the Vainshtein screening works in modified gravity models
- Test modified gravity models by comparing some model predictions with cluster lensing data

Top-down approach →Construction a viable model/ getting its hint

Outline

- Introduction & Motivation
 - Cosmic Acceleration
 - Recent Progress of Modified Gravity
 - -Theoretical: Screening/General Framework
 - -Observational: Galaxy Cluster Surveys
- ✓Spherical Symmetric Configuration in General Modification (Horndeski's Theory)
 - Cluster Lensing Signal in Modified Gravity
 - Summary & Conclusion

Galileon-type Modified Gravity

- Motivation: Decoupling limit of DGP braneworld model $\mathcal{L}_{int} \sim X \Box \phi$: higher-derivative term where ϕ : scalar field, $X \equiv -\frac{1}{2}(\partial \phi)^2$ enjoy Galileon shift symmetry: $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + c_{\mu}$
 - \rightarrow \lceil Cosmic acceleration
 - Up to 2nd order derivatives in EOM
 - Vainshtein screening

[DGP] Dvali, Gabadadze & Porrati 2000 [DLofDGP] Luty, Porrati, Rattazzi 2003; Nicolis, Rattazzi 2004 [Galileon] Nicolis, Rattazzi & Trincherini 2009

Vainshtein Screening in Cubic Galileon $\mathcal{L} = \mathcal{L}_{\rm GR} - X - \frac{1}{\Lambda^3} X \Box \phi + \mathcal{L}_m$

At r<<r_v: Large kinetic term ⇔Strong self-coupling ⇔Weak coupling to matter

(D)

$$\phi'(r) \propto r^{-1/2} \ll \Phi'_{\rm N}(r) \propto r^{-2}$$

Screened ⇔ Recover GR !

Screening radius r_v~a few Mpc

Cluster

Horndeski's Theory: General Modification in D=4 dim. Up to 2nd order derivatives in EOM $S = \int d^4x \sqrt{-g} [\mathcal{L} + \mathcal{L}_m] \text{ Minimally coupled to matter}$ $\mathcal{L} = K(\phi, X) - G_3(\phi, X) \Box \phi$ $+G_4(\phi, X)R + G_{4X} \times \text{(field derivatives)}$ $+ G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi$ $- \frac{1}{6} G_{5X} \times \text{(field derivatives)}$ where $G_{iX} \equiv \partial G_i / \partial X$ 4 arbitrary functions of ϕ , X [Horndeski 1974] is equivalent to the Generalized Galileon [Deffayet et al. 2011; Kobayashi, Yamaguchi, Yokoyama 2011]

Background Solution (Local Universe)

$$ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu$$

 ψ_0 –

$$\phi = \phi_0 = \text{const}, \ X_0 = 0$$

Spherical symmetric perturbations produced by a nonrelativistic matter (Galaxy Cluster)

$$ds^{2} = -[1 + 2\Phi(r)]dt^{2} + [1 - 2\Psi(r)]\delta_{ij}dx^{i}dx^{j}$$

All the coefficients are evaluated at the background.

Static-Spherically Symmetric Configurations

Metric EOM:

φEOM:

where six dimensionless parameters: ξ , η , μ , α , ν , β are functions of K_X , $G_{3\phi}$, G_{3X} , G_{4X} , $G_{5\phi}$,.... (cf. Vainshtein mechanism under considering background evolution [Kimura, Kobayashi, Yamamoto '12])

Dimensionless parameters Let us introduce six dimensionless parameters: ξ , η , μ , α , ν , β

$$G_{4} = \frac{M_{\rm Pl}^{2}}{2}, \quad G_{4\phi} = M_{\rm Pl}\xi, K_{X} - 2G_{3\phi} = \eta, -G_{3X} + 3G_{4\phi X} = \frac{\mu}{\Lambda^{3}}, G_{4X} - G_{5\phi} = \frac{M_{\rm Pl}}{\Lambda^{3}}\alpha, G_{4XX} - \frac{2}{3}G_{5\phi X} = \frac{\nu}{\Lambda^{6}}, G_{5X} = -\frac{3M_{\rm Pl}}{\Lambda^{6}}\beta.$$

Quintic Scalar-Field Equation

Combining metric EOM and ϕ EOM, we arrive at

$$P(x,A) := \xi A(r) + \left(\frac{\eta}{2} + 3\xi^2\right) x + \left[\mu + 6\alpha\xi - 3\beta A(r)\right] x^2 + \left(\nu + 2\alpha^2 + 4\beta\xi\right) x^3 - 3\beta^2 x^5 = 0$$

where we define

$$x = \frac{1}{\Lambda^3} \frac{\varphi'}{r}, \ A(r) = \frac{1}{M_{\rm Pl}\Lambda^3} \frac{M(r)}{8\pi r^3}$$

both of which are dimensionless.

M(r) is the enclosed mass.

Scalar-Field Equation[cf. Sbisa, Niz, Koyama, Tasinato '12]

• Solve
$$x=\frac{1}{\Lambda^3}\frac{\varphi'}{r}, \ A(r)=\frac{1}{M_{\rm Pl}\Lambda^3}\frac{M(r)}{8\pi r^3}$$

$$P(x,A) := \xi A(r) + \left(\frac{\eta}{2} + 3\xi^2\right) x + \left[\mu + 6\alpha\xi - 3\beta A(r)\right] x^2$$

$$+ \left(\nu + 2\alpha^{2} + 4\beta\xi\right)x^{3} - 3\beta^{2}x^{5} = 0$$

for the inner region (A>>1) and the outer region (A<<1).

 Derive a condition under which the two solutions are smoothly matched in an intermediate region.

Outer Solution: Asymptotically Flat

• In the outer region (A<<1), there is always a decaying solution, $2 \notin A(A)$

$$x \approx x_{\rm f} := -\frac{2\xi A(r)}{\eta + 6\xi^2}$$

Inner Solution: Vainshtein

• In the inner region (A>>1), we have a solution ($\xi\beta$ >0):

$$x \approx x_{\pm} := \pm \sqrt{\frac{\xi}{3\beta}} = \text{const}$$

 $(P(x_{\pm}) \text{ does not depend on A.})$

where
$$x = \frac{1}{\Lambda^3} \frac{\varphi'}{r}$$
, $A(r) = \frac{1}{M_{\rm Pl}\Lambda^3} \frac{M(r)}{8\pi r^3}$

Smoothly Matching of Two Solutions

In this case, P(x)=o has a single real root in (x-,o) for any A>o.

The two solutions are smoothly matched !

Α

Parameters Corresponding to Decoupling Limit of Ghost-free Massive Gravity

$$\mathcal{L} = \mathcal{L}_{\rm GR} + m_g^2 h_{\mu\nu}^2 + \mathcal{O}(h_{\mu\nu}^3)$$

Massive Gravity = A sort of Galileon [de Rham, Gabadadze & Tolley 2010]

Decoupling limit: $M_{pl} \rightarrow \infty$, $m_g \rightarrow o$, $\Lambda^3 = M_{pl}m_g^2 = fixed$.

Corresponding to

(Proxy theory of massive gravity[de Rham & Heisenberg 2011])

The condition of smooth matching of the two solutions:

$$\alpha < 0 \text{ or } \frac{\sqrt{\beta}}{\alpha} \ge \sqrt{\frac{5+\sqrt{13}}{24}} \sim 0.6$$

The region $\{\alpha, \beta\}$ which smoothly match the two solutions:

Outline

- Introduction & Motivation
 - Cosmic Acceleration
 - Recent Progress of Modified Gravity
 - -Theoretical: Screening/General Framework
 - -Observational: Galaxy Cluster Surveys
- Spherical Symmetric Configuration in General Modification (Horndeski's Theory)
 Cluster Lensing Signal in Modified Gravity
 - Summary & Conclusion

Gravitational Lensing in Modified Gravity

Geodesic equation

$$\frac{d^2}{d\chi^2}(\chi\theta^i) = 2\Phi_{+,i}, \quad i = 1, 2 \qquad \Phi_+ \equiv (\Phi + \Psi)/2$$

• Surface mass density $\Sigma_{\rm S}({
m r}_{
m perp})\!\propto_{
m K}({
m r}_{
m perp})$

$$\Sigma_S \propto \int_0^\infty dZ \Delta^{(2D)} \Phi_+ \qquad r = \sqrt{r_\perp^2 + Z^2}$$

where lensing potential in modified gravity:

$$\Delta \Phi_{+} = \frac{\Lambda^{3}}{M_{\rm Pl}} \frac{\left[\left(\alpha x^{2} + 2\beta x^{3} + 2A\right)r^{3}\right]'}{2r^{2}} \qquad \Delta \Phi_{+} \propto r \phi' \phi''$$

assuming $\delta \rho(\mathbf{r})$ as NFW profile.

Scalar field in modified gravity:

Lensing potential in modified gravity:

Lensing Potential of Galaxy Cluster

Mass map (shear)

Surface mass density $\Sigma_{
m S}({
m r}_{
m perp})$

Over a wide range of radius Small error of the lensing profile data

[Umetsu et al. '11, cf. Oguri et al. '12]

 $r_{1}(h^{-1}kpc)$

Surface Mass Density in Modified Gravity

Parameters: { α , β , Λ ; ρ_s , r_s } ($\Lambda^3 = M_{Pl}/(0.01/H_o)^2$, ρ_s , r_s fixed)

A dip appears at $r \sim r_V := (r_s M_{Pl}/\Lambda^3)^{1/3}$ in a typical case. \rightarrow This allows us to put constraint.

Surface Mass Density in Modified Gravity

A dip appears at $r \sim r_V := (r_s M_{Pl}/\Lambda^3)^{1/3}$ in a typical case. \rightarrow This allows us to put constraint.

Summary & Conclusion

- Modified gravity by an ϕ
 - Motivation: Cosmic acceleration
 - With the screening mechanism
- We demonstrate how an effect of ϕ on $\Delta \Phi_+$ appears in General framework (Horndeski's theory). A dip appears!
- This allows us to put a constraint on modified gravity model with lensing profile of galaxy cluster.

Thank you for your attention