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What is the feature of teleparallel gravity?
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Telenaralll @ An alternative theory of gravity, which is equivalent to
eleparallel
ety General Relativity.

@ This is a curvatureless gravity theory, and the gravitational
effect comes from torsion instead of curvature.



Teleparallel Gravity
A brief introduction
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Coupling to @ The dynamical variable of teleparallel gravity is the

Gravity

vierbein fields e 4(z#*), which form an orthonormal basis
e for the tangent space at each point z* of the manifold:
S e4-ep =nap, Where nap = diag(l,—1,—1,—1).
Gravity @ Notation:
Greek indices u, v,... : coordinate space-time.
Latin indices A, B,... : tangent space-time.

@ The relationship between metric and vierbein fields is

9 (T) =B eﬁ(IE) 65 ().
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A brief introduction
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Teleparallel @ The torsion tensor is defined as
Gravity
A A
W W
A A A A
1,=0,, -1, =e¢ei (O, —0ve,).

@ Under Weitzenbock connection, the Riemann tensor
vanishes:

o wpP wpP wp wo wp wo
Ruau = F,ul/,a - Fua,u + F&arwj - FJVF

po = 0.
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e @ We can construct the “teleparallel Lagrangian” by using
e the torsion tensor,
Lp=T=a,TP" Ty, +aTP"T,,, + asTy, T,"" .

@ It is a good approach of General Relativity when we choose

the suitable parameters a; = %, as = % and a3 = —1:

Teleparallel
Gravity

R=-T-2V’T",,

where R is constructed by Levi-Civita connection.
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Chung Chi S = /d4xe [— + ,CM]

e where e = det (¢4,) = \/=g.
@ Varying this action respect to the vierbein fields gives the
field equation

-1 pw P v _ L K em
e 10, (ee)S,M) — eAT? 0 S, _ZGAT_ 2eATp,

where T' ,¥ stands for the energy-momentum tensor and
Sl = (T = TH, + T, ") + & (05 T, — &% T™L).



Teleparallel Dark Energy
What is teleparallel dark energy model?
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Lee o Teleparallel dark energy model is a dark energy model,
which can explain the late time accelerating universe.

@ This model combines quintessence model with teleparallel
Teleparallel .
Dark Energy graVIty.

@ This model differs from quintessence model when we turn
on the non-minimal coupling term.
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A brief review of quintessence model
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Lee @ Quintessence is one of the most popular dark energy

model.

— @ The generalized quintessence model action is given by
eleparalle
Dark Energy

S = /d4x\/—_g [2—]:2 + % (0,00"¢ + ERP?) — V(¢) + L



Teleparallel Dark Energy

A brief review of quintessence model

DT:::F’E;ZI:; @ Under the flat Friedmann-Robertson-Walker (FRW)
il background ds? = dt? — a?(t)dz?, the gravitational field
Coupling to . .

Gravity equations can be derived as

Chung-Chi N\ 2 2
ee a K
. H2E<a> :g(p¢+,0m+,0r)’
. /ﬂ'/2
Teleparallel H = - (,O(z) + p¢ + pm + 4p7‘/3) 5
Dark Energy 2

where pg and py are the effective energy and pressure
density

po = 58+ V(9) + 6HOb + 3EH,

o= %éﬂ —V(p)+ € (2H + 3H2> @2 + AEH b
+2£06 + 264°



Teleparallel Dark Energy
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Bk Enamy @ Similar to quintessence model, we can construct
with Purely

Non-minimal teleparallel dark energy model, and the action is given by
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Gravity

S = / d*ze [— + = (0,00"¢ + £T¢%) — V(9) +L‘,M] .

@ Variation of action with respect to the vierbein fields yields
Teleparallel . .
AT the field equation

_eA[ 060 v<¢>]+eia”¢au¢

+48eh, S, ¢ (0u) = €54 T 7.



Teleparallel Dark Energy
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po = §¢2 + V() — 3¢H ¢,

Lee

1. . -
Py =58 = V(6) + 4HOS + ¢ (3H2 n QH) 2.

Teleparallel
Dark Energy

@ Variation of action with respect to the scalar field gives us
the equation of motion of the scalar field

b+ 3Ho+ 6£H?¢+ V' (¢) =

@ These equations lead to the continuity equation

pp + 3H(1 4+ wy)py = 0, where wy is the equation of
state of the scalar field, which is defined as wy = p"’.
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Chung-Chi @ In the minimal coupling case (£ = 0), the teleparallel dark
energy is equivalent to quintessence model

@ However, these two models are different theories when we

Teleparallel rn n h n n—minim I ||n n n
Do turn on the no al coupling constant (£ # 0)

@ Teleparallel dark energy model can cross the

phantom-divide easily. 04-
W 061 .
a '.'
2 sl -
1.0 /‘_______X
1.2+ — T
0 1 2 3



Teleparallel Dark Energy:
Observational Constraints
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Chune.Ch @ We would like to test teleparallel dark energy model by

bee using the SNIa, BAO and CMB data. These observational
data can tell us whether this is a suitable model for dark
energy or not

@ We consider three kinds of potential cases:

QObservational Power-Law potential: V(¢) = Vpo?
Exponential potential: V(¢) = Vye "¢
Inverse hyperbolic cosine potential: V(¢) = —1

cosh(ko)



Teleparallel Dark Energy:

Observational Constraints
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'\g;r:;n”gné' o Left: fixing Q,, = 27%, the best fit locates at h ~ 0.7,
Gravity §~—0.42, wgy ~ —0.96 and x% ~ 543.9

Chung-Chi Right: fixing £ = —0.41, the best fit locates at h ~ 0.7,

- O = 28.0%, wy ~ —0.99 and y2 ~ 544.5
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Teleparallel Dark Energy:

Observational Constraints
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Darkanergy [*] Potent|a|: V(¢) — ‘/Oe_n(b

with Purely

'\é(i,f,:”n?;"lz' o Left: fixing Q,, = 27%, the best fit locates at h ~ 0.7,
Gravity g ~ —041’ w(z) ~ —104 and X2 ~ 5443
Chung-Chi Right: fixing £ = —0.41, the best fit locates at h ~ 0.7,

- O ~ 27.1%, wy ~ —1.07 and x2 ~ 544.6
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Teleparallel Dark Energy:

Observational Constraints
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Dark Energy o POtentia|Z V(¢) == VO

with Purely cosh(k)

'\é‘;':r:”“‘r':g‘":g' o Left: fixing Q,, = 27%, the best fit locates at h ~ 0.7,
Gravity £~ —0.38, wy ~ —1.05 and x? ~ 544.8

S Right: fixing £ = —0.41, the best fit locates at h ~ 0.7,

Qu ~ 26.7%, wy ~ —1.03 and x? ~ 545.1

Woeo Woe,
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V(¢) = 0 Case
The Basic Idea
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@ Here, we consider the simplest model V(¢) = 0.
@ The gravity action is rewritten as

S = /d4xe[—+ (0,00" ¢ + ETH*) + L



V(¢) = 0 Case

Modified Friedmann Equation

Teleparallel

Durk Energy @ Under FRW metric (e;j‘ = diag(1,a,a,a)), the scalar field
oo Furey and the gravitational field equations read
Coupling to . .
cfavitgy ¢+3H¢+6§H2¢: 0,
Chung-Chi . 2 2
a K
: H2E<E> =3 (Ps +pm+pr),
. /€2
H === (po + s+ pm + 4pr/3)

where the matter energy density p,, o< a2, the radiation
energy density p, oc a™?

@ The energy density and pressure

1.
po = 50" = 3EH¢”,

Py = %dﬂ +4€Hpo + £ (3H2 + 2H> @2



V(¢) = 0 Case
Exact Solution in RD and MD
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Non-minimal @ When the universe is undergoing a radiation-dominated
Coupling to .

Cravity. (RD) and matter-dominated (MD) eras, the Hubble

. : . _ A _ 2

C huLniL,h\ parameter has the form: H = T where A = W

and weyy is the total EoS.

@ Substituting that into the scalar field equation, one can
obtain the exact solution:

o(t) = COpth 4 Oyt
[i\/(3A T 1)2 24642 — (34— 1)),

1
2
where (' 2 are constants.

@ There exist an increasing mode and a decreasing mode.



V(¢) = 0 Case

Exact Solution in RD and MD
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with Purely
Non-minimal
(2 —v1- 245) , Pp O q SHVIZHL,
(1 /1= 325/3) | py o a(~OHVII6E)/2

Coupling to
Gravity RD w¢ =
Chung-Chi

e MD: w¢ =

N — W =

Table: Explicit solutions of the scalar field in RD and MD with
different values of &.

[ ¢ 1l ()0~ I G-18 [ @-84 [ (-1 I
Era RD MD RD MD RD MD RD MD
11 —3¢ =5 1 +0.26 0.84 +1 +1 +1.21
wy 144 === 0 —0.26 —0.79 -1 -1 —1.21
Py o a74712§ a7378§ a73 a72.21 a70,64 Const. Const. a0,62




V(¢p) =0 Case
Exact Solution in SD
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N ey, @ When the universe is dominated by dark energy, the

C"gfa“vri'tgym scalar-dominated era, we deduce the evolution of the

Chung-Chi scalar field from the second modified Friedmann equation
L“ (gravitational field equation),

1 (dp \* 6 | sind
7ig (a) = = o0 =+ A
where F(¢) = 1+ k%¢¢? and 0(a) = /—6&Ina + Cs.

@ The equation of state can also be derived as

wy = —1 —/—32¢/3tan 6.



V(¢) = 0 Case

Numerical Demonstration

R @ The EoS has the fix points at RD and MD eras.

ith Purel - - -
o PR @ The EoS is monotonically decreasing and reaches the

S singularity wg — oo.
Chung.Chi @ The different initial condition corresponds to the same

L“ final state of (,,, wy) figure in current stage.

W,
05




Classification of Finite-time Singularities
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Chung-Chi @ There are four classes of finite-time singularity !
. o Type | (Big Rip): For t — t5, a — oo, p — oo and
|p| — oo.

o Type Il (sudden): For t — 5, a — a5, p — ps and
|p| — oo.

o Type lll: For t — t5, a — as, p — o0 and |p| — oo.

e Type IV: Fort = ts, a — as, p — 0, |p| — 0 and higher
derivatives of H diverge.

1S. 'i. Nojiri, S. D. Odintsov and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)
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“Type IlI" Singularity
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Non-minimal

Sl deduce an integrable equation from the gravitational field
. ravﬁ y} _ equation:
C Hll\j;‘;‘L _ni 2

d 3 K 3 0

dt [F(¢)a’H] = o Pma = §HOQ( )

F(¢) = 1+4r°6¢%
@ Through the equation

Cy Cy

Fa®H = H= =
“ Ca = adF  adcos?f(a)’

we can estimate that H is always positive and goes to
infinite at = /2 in ¢-dominated era.
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Data Fitting
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Figure: The 10—30 confidence regions in (,0,&) (left panel) and
(o, weo) (right panel) obtained from the SNla (blue), BAO
(green), CMB (red), and the combined (black) data.



Summary
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7 _ @ Teleparallel dark energy model is equivalent to

et quintessence model happens at the minimal coupling case
(£ = 0), but it has a different behavior when we include a
non-minimal coupling term (£ # 0).

@ We show that the equation of state of teleparallel dark
energy model can cross the phantom-divide easily.

@ The observational constraints show a good result on this
model. This model is suitable for the late-time
accelerating universe.

Summary

@ We deduce the exact solution of teleparallel dark energy
without potential, and demonstrate this behavior by
numerical result.
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