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Teleparallel Gravity
What is the feature of teleparallel gravity?

An alternative theory of gravity, which is equivalent to
General Relativity.

This is a curvatureless gravity theory, and the gravitational
effect comes from torsion instead of curvature.
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Teleparallel Gravity
A brief introduction

The dynamical variable of teleparallel gravity is the
vierbein fields eA(x

μ), which form an orthonormal basis
for the tangent space at each point xμ of the manifold:
eA · eB = ηAB , where ηAB = diag(1,−1,−1,−1).

Notation:
Greek indices μ, ν,... : coordinate space-time.
Latin indices A,B,... : tangent space-time.

The relationship between metric and vierbein fields is

gμν(x) = ηAB eAμ (x) e
B
ν (x).
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Teleparallel Gravity
A brief introduction

Weitzenböck connection: a curvatureless connection

w
Γ
λ

νμ ≡ eλA ∂μe
A
ν

The torsion tensor is defined as

T λ
μν ≡

w
Γ
λ

νμ −
w
Γ
λ

μν = eλA (∂μe
A
ν − ∂νe

A
μ ).

Under Weitzenböck connection, the Riemann tensor
vanishes:

Rρ
μσν =

w
Γ
ρ

μν,σ −
w
Γ
ρ

μσ,ν +
w
Γ
ρ

δσ

w
Γ
δ

μν −
w
Γ
ρ

δν

w
Γ
δ

μσ = 0.
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Teleparallel Gravity
A brief introduction

We can construct the “teleparallel Lagrangian” by using
the torsion tensor,
LT = T = a1T

ρμνTρμν + a2T
ρμνTνμρ + a3T

ρ
ρμ T μν

ν .

It is a good approach of General Relativity when we choose
the suitable parameters a1 =

1
4 , a2 =

1
2 and a3 = −1:

R̃ = −T − 2∇μT ν
μν ,

where R̃ is constructed by Levi-Civita connection.
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Teleparallel Gravity
A brief introduction

The action of teleparallel gravity is

S =

∫
d4xe

[
T

2κ2
+ LM

]
,

where e = det
(
eAμ

)
=

√−g.

Varying this action respect to the vierbein fields gives the
field equation

e−1∂μ(ee
ρ
ASρ

μν)− eλAT
ρ
μλSρ

νμ − 1

4
eνAT =

κ2

2
eρA

em
T ρ

ν ,

where
em
T ρ

ν stands for the energy-momentum tensor and
Sρ

μν = 1
4 (T

νμ
ρ − T μν

ρ + T μν
ρ ) + 1

2

(
δμρ Tαν

α − δνρ Tαμ
α

)
.
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Teleparallel Dark Energy
What is teleparallel dark energy model?

Teleparallel dark energy model is a dark energy model,
which can explain the late time accelerating universe.

This model combines quintessence model with teleparallel
gravity.

This model differs from quintessence model when we turn
on the non-minimal coupling term.
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Teleparallel Dark Energy
A brief review of quintessence model

Quintessence is one of the most popular dark energy
model.

The generalized quintessence model action is given by

S =

∫
d4x

√−g

[
R

2κ2
+

1

2

(
∂μφ∂

μφ+ ξRφ2
)− V (φ) + LM

]
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Teleparallel Dark Energy
A brief review of quintessence model

Under the flat Friedmann-Robertson-Walker (FRW)
background ds2 = dt2 − a2(t)d	x2, the gravitational field
equations can be derived as

H2 ≡
(
ȧ

a

)2

=
κ2

3
(ρφ + ρm + ρr) ,

Ḣ = −κ2

2
(ρφ + pφ + ρm + 4ρr/3) ,

where ρφ and pφ are the effective energy and pressure
density

ρφ =
1

2
φ̇2 + V (φ) + 6ξHφφ̇+ 3ξH2φ2,

pφ =
1

2
φ̇2 − V (φ) + ξ

(
2Ḣ + 3H2

)
φ2 + 4ξHφφ̇

+2ξφφ̈+ 2ξφ̇2
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Teleparallel Dark Energy

Similar to quintessence model, we can construct
teleparallel dark energy model, and the action is given by

S =

∫
d4xe

[
T

2κ2
+

1

2

(
∂μφ∂

μφ+ ξTφ2
)− V (φ) + LM

]
.

Variation of action with respect to the vierbein fields yields
the field equation(

2

κ2
+ 2ξφ2

)[
e−1∂μ(ee

ρ
ASρ

μν)− eλAT
ρ
μλSρ

νμ − 1

4
eνAT

]

−eνA

[
1

2
∂μφ∂

μφ− V (φ)

]
+ eμA∂

νφ∂μφ

+4ξeρASρ
μνφ (∂μφ) = eρA

em
T ρ

ν .
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Teleparallel Dark Energy

Again, the effective energy and pressure density under
FRW metric (eAμ = diag(1, a, a, a)) are

ρφ =
1

2
φ̇2 + V (φ)− 3ξH2φ2,

pφ =
1

2
φ̇2 − V (φ) + 4ξHφφ̇+ ξ

(
3H2 + 2Ḣ

)
φ2.

Variation of action with respect to the scalar field gives us
the equation of motion of the scalar field

φ̈+ 3Hφ̇+ 6ξH2φ+ V ′(φ) = 0.

These equations lead to the continuity equation
ρ̇φ + 3H(1 + wφ)ρφ = 0, where wφ is the equation of
state of the scalar field, which is defined as wφ ≡ pφ

ρφ
.
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Teleparallel Dark Energy

In the minimal coupling case (ξ = 0), the teleparallel dark
energy is equivalent to quintessence model

However, these two models are different theories when we
turn on the non-minimal coupling constant (ξ �= 0)

Teleparallel dark energy model can cross the
phantom-divide easily.
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Teleparallel Dark Energy:
Observational Constraints

We would like to test teleparallel dark energy model by
using the SNIa, BAO and CMB data. These observational
data can tell us whether this is a suitable model for dark
energy or not

We consider three kinds of potential cases:
Power-Law potential: V (φ) = V0φ

4

Exponential potential: V (φ) = V0e
−κφ

Inverse hyperbolic cosine potential: V (φ) = V0
cosh(κφ)
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Teleparallel Dark Energy:
Observational Constraints

Potential: V (φ) = V0φ
4

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,
ξ � −0.42, wφ � −0.96 and χ2 � 543.9

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,
Ωm � 28.0%, wφ � −0.99 and χ2 � 544.5



Teleparallel
Dark Energy
with Purely
Non-minimal
Coupling to

Gravity

Chung-Chi
Lee

Teleparallel
Gravity

Teleparallel
Dark Energy

Observational
Constraints

V (φ) = 0
Case

Summary

Teleparallel Dark Energy:
Observational Constraints

Potential: V (φ) = V0e
−κφ

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,
ξ � −0.41, wφ � −1.04 and χ2 � 544.3

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,
Ωm � 27.1%, wφ � −1.07 and χ2 � 544.6



Teleparallel
Dark Energy
with Purely
Non-minimal
Coupling to

Gravity

Chung-Chi
Lee

Teleparallel
Gravity

Teleparallel
Dark Energy

Observational
Constraints

V (φ) = 0
Case

Summary

Teleparallel Dark Energy:
Observational Constraints

Potential: V (φ) = V0
cosh(κφ)

Left: fixing Ωm = 27%, the best fit locates at h � 0.7,
ξ � −0.38, wφ � −1.05 and χ2 � 544.8

Right: fixing ξ = −0.41, the best fit locates at h � 0.7,
Ωm � 26.7%, wφ � −1.03 and χ2 � 545.1
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V (φ) = 0 Case
The Basic Idea

Here, we consider the simplest model V (φ) = 0.

The gravity action is rewritten as

S =

∫
d4xe

[
T

2κ2
+

1

2

(
∂μφ∂

μφ+ ξTφ2
)
+ LM

]
.



Teleparallel
Dark Energy
with Purely
Non-minimal
Coupling to

Gravity

Chung-Chi
Lee

Teleparallel
Gravity

Teleparallel
Dark Energy

Observational
Constraints

V (φ) = 0
Case

Summary

V (φ) = 0 Case
Modified Friedmann Equation

Under FRW metric (eAμ = diag(1, a, a, a)), the scalar field
and the gravitational field equations read

φ̈+ 3Hφ̇+ 6ξH2φ = 0 ,

H2 ≡
(
ȧ

a

)2

=
κ2

3
(ρφ + ρm + ρr) ,

Ḣ = −κ2

2
(ρφ + pφ + ρm + 4ρr/3) ,

where the matter energy density ρm ∝ a−3, the radiation
energy density ρr ∝ a−4

The energy density and pressure

ρφ =
1

2
φ̇2 − 3ξH2φ2,

pφ =
1

2
φ̇2 + 4ξHφφ̇+ ξ

(
3H2 + 2Ḣ

)
φ2.
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V (φ) = 0 Case
Exact Solution in RD and MD

When the universe is undergoing a radiation-dominated
(RD) and matter-dominated (MD) eras, the Hubble
parameter has the form: H = A

t , where A = 2
3(1+weff )

and weff is the total EoS.

Substituting that into the scalar field equation, one can
obtain the exact solution:

φ(t) = C1t
l1 + C2t

l2 ,

l1,2 =
1

2

[
±
√

(3A− 1)2 − 24ξA2 − (3A− 1)
]
,

where C1,2 are constants.

There exist an increasing mode and a decreasing mode.
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V (φ) = 0 Case
Exact Solution in RD and MD

Consequently, one obtains

RD: wφ =
1

3

(
2−

√
1− 24ξ

)
, ρφ ∝ a−5+

√
1−24ξ ;

MD: wφ =
1

2

(
1−

√
1− 32ξ/3

)
, ρφ ∝ a(−9+

√
9−96ξ )/2 .

Table: Explicit solutions of the scalar field in RD and MD with
different values of ξ.

ξ (i) 0− (ii) −1/8 (iii) −3/4 (iv) −1

Era RD MD RD MD RD MD RD MD

l1 −3ξ −8ξ
3

1
4

+0.26 0.84 +1 +1 +1.21

wφ
1
3

+ 4ξ
−8ξ
3

0 −0.26 −0.79 −1 −1 −1.21

ρφ ∝ a−4−12ξ a−3−8ξ a−3 a−2.21 a−0.64 Const. Const. a0.62
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V (φ) = 0 Case
Exact Solution in SD

When the universe is dominated by dark energy, the
scalar-dominated era, we deduce the evolution of the
scalar field from the second modified Friedmann equation
(gravitational field equation),

1

F (φ)

(
dφ

d ln a

)2

=
6

κ2
⇒ φ(a) = ± sin θ√

−κ2ξ
,

where F (φ) ≡ 1 + κ2ξφ2 and θ(a) =
√−6ξ ln a+ C3.

The equation of state can also be derived as

wφ = −1−
√

−32ξ/3 tan θ.
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V (φ) = 0 Case
Numerical Demonstration

The EoS has the fix points at RD and MD eras.
The EoS is monotonically decreasing and reaches the
singularity wφ → ∞.
The different initial condition corresponds to the same
final state of (Ωm, wφ) figure in current stage.
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Classification of Finite-time Singularities

There are four classes of finite-time singularity 1

Type I (Big Rip): For t → ts, a → ∞, ρ → ∞ and
|p| → ∞.
Type II (sudden): For t → ts, a → as, ρ → ρs and
|p| → ∞.
Type III: For t → ts, a → as, ρ → ∞ and |p| → ∞.
Type IV: For t → ts, a → as, ρ → 0, |p| → 0 and higher
derivatives of H diverge.

1
S. ’i. Nojiri, S. D. Odintsov and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005)
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V (φ) = 0 Case
“Type III” Singularity

For the universe dominated by matter and dark energy, we
deduce an integrable equation from the gravitational field
equation:

d

dt

[
F (φ)a3H

]
=

κ2

2
ρma3 =

3

2
H2

0Ω
(0)
m ,

F (φ) ≡ 1 + κ2ξφ2,

Through the equation

Fa3H = C4 → H =
C4

a3F
=

C4

a3cos2θ(a)
,

we can estimate that H is always positive and goes to
infinite at θ = π/2 in φ-dominated era.
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V (φ) = 0 Case
Data Fitting

Figure: The 1σ–3σ confidence regions in (Ωm0, ξ) (left panel) and
(Ωm0, wφ0) (right panel) obtained from the SNIa (blue), BAO
(green), CMB (red), and the combined (black) data.
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Summary

Teleparallel gravity is an alternative gravity theory of the
universe.

Teleparallel dark energy model is equivalent to
quintessence model happens at the minimal coupling case
(ξ = 0), but it has a different behavior when we include a
non-minimal coupling term (ξ �= 0).

We show that the equation of state of teleparallel dark
energy model can cross the phantom-divide easily.

The observational constraints show a good result on this
model. This model is suitable for the late-time
accelerating universe.

We deduce the exact solution of teleparallel dark energy
without potential, and demonstrate this behavior by
numerical result.
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