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Abstract, Outline
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For the Poincaré gauge theory of gravity (PG, aka PGT)

two good dynamical torsion modes with spin 0 have been found.

An effective Lagrangian analysis of cosmological models
reveals some of the dynamical possibilities
including damped oscillations in the expansion rate.

● Foundations, the PG theory
● good dynamic modes, the scalar mode model
● PG cosmology, kinematics
● PG scalar cosmology, dynamics
● 2nd order and 1st order eqns
● effective Lagrangian & Hamiltonian
● constant curvature solutions
● linearized theory, late time normal modes
● numerical evolution
● summary



GEOMETRY:
connection, torsion, curvature, metric
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A connection determines
the covariant derivative ∇µ and parallel transport.

From a connection 2 tensor fields can be constructed,
curvature and torsion:

[∇µ,∇ν ]V
α = Rα

βµνV
β − T γ

µν∇γV
α.

Physical spacetime has also a metric gµν . It determines the causal
structure, the magnitude of vectors, angles, path length and a relation
between tangent vectors and covectors (one-forms).

Consider Riemann-Cartan geometry:
metric compatible connection ∇µgαβ = 0.
i.e., lengths and angles are preserved under parallel transport.



local gauge theories
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● All the known physical interactions can be formulated in a common
framework as local gauge theories:

● However the standard theory of gravity, Einstein’s GR, based on the
spacetime metric, is a rather unnatural gauge theory

● Physically (and geometrically) it is reasonable to consider gravity as a
gauge theory of the local Poincaré symmetry of Minkowski spacetime

● There is a perfect correspondence between the natural geometric
symmetries of Riemann-Cartan geometry and local Poincaré gauge
symmetries.



The Poincar é gauge theory of gravity (PG)
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[Hehl ’80, Hayashi & Shirafuji ’80],
the local gauge potentials are, for translations, the orthonormal co-frame,
(which determines the metric):

ϑα = eαidx
i → gij = eαie

β
jηαβ, ηαβ = diag(−1.+ 1,+1,+1),

and, for Lorentz/rotations, the metric-compatible (Lorentz) connection
(one-form):

Γαβ
idx

i = Γ[αβ]
idx

i.

The associated field strengths are the torsion and curvature (2-forms):

Tα := Dϑα := dϑα + Γα
β ∧ ϑβ =

1

2
Tα

µνϑ
µ ∧ ϑν ,

Rαβ := DΓαβ := dΓαβ + Γα
γ ∧ Γγβ =

1

2
Rαβ

µνϑ
µ ∧ ϑν ,

which satisfy the respective Bianchi identities:

DTα ≡ Rα
β ∧ ϑβ, DRα

β ≡ 0.



General PG Lagrangian
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The general quadratic PG Lagrangian density has the form
(see [Baekler, Hehl & Nester PRD 2011, Baekler & Hehl CQG 2011])

L [ϑ,Γ] ∼ κ−1
[

Λ + scalar curvature + pseudoscalar curvature + torsion2(3 + 2)
]

+̺−1
[

curvature2(6 + 4)
]

.

where Λ = cosmological constant, κ = 8πG/c4, ̺−1 has the dimensions of action.

The general theory has 11 scalar parameters and 7 pseudoscalar parameters.

There are 3 total derivative “topological terms”
(one scalar and two pseudoscalar),
which effectively reduce the number of physical parameters to to 10 scalar and 5
pseudoscalar.

Note: There is no fundamental reason to expect gravity to be parity invariant so
no fundamental reason to exclude odd parity coupling terms



field equations
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Gravitational field eqns are 2nd order eqns for the gauge potentials:

δϑαi : Λ + a0Gα
i +DT + T 2 +R2 = energy-momentum density

δΓαβ
k : T +DR = source spin density.

Bianchi identities =⇒
conservation of source energy-momentum & angular momentum.



good dynamic modes
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early studies did not seriously consider pseudoscalar parameters.

● Investigations of the linearized theory identified six possible dynamic
connection modes carrying spin-2±, 1±, 0±.
[Hayashi & Shirafuji 1980, Sezgin & van Nuivenhuizen 1980, . . . ]

● A good dynamic mode transports positive energy at speed ≤ c.
At most three modes can be simultaneously dynamic;
all the cases were tabulated;
many combinations are satisfactory to linear order.

● A Hamiltonian analysis revealed the related constraints
[Blagojević & Nicolić, 1983].

● Then detailed investigations
[Hecht, N & Zhytnikov 1996, Chen, N & Yo 1998, Yo & N 1999, 2002]
concluded that effects due to nonlinearities could be expected to
render all of these cases physically unacceptable—
except for the two “scalar modes”: spin-0+ and spin-0−.



exploring the dynamics
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In order to explore the dynamics of these two scalar modes at NCU we
considered cosmological models.

The 0+ mode was considered first:
[Yo & N, Mod Phys Lett A, 2007], [Shie, N & Yo PRD 2008]

The model was extended to also include the 0− mode
[Chen et al JCAP 2009]

Those investigations did not consider any pseudoscalar parameter terms.



BHN Lagrangian
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● Now, the model has been extended to include parity violating terms
[Baekler Hehl & N PRD 2011].

● The Lagrangian of the BHN model is

L[ϑ,Γ] =
1

2κ

[

−2Λ + a0R−
1

2

3
∑

n=1

an
(n)

T 2 + b0X + 3σ2TµP
µ

]

+
1

2̺

[

w6

12
R2 +

w3

12
X2 +

µ3

12
RX

]

,

where R & X = 6R[0123] are the scalar & pseudoscalar curvatures,
Tµ ≡ Tα

αµ, Pµ ≡ 1
2ǫµν

αβT ν
αβ are the torsion trace & axial vectors and

b0 & σ2 & µ3 are the odd parity coupling constants.

There is one odd parity topological identity (Nieh-Yan)

d(ϑα ∧ Tα) = Tα ∧ Tα − ϑα ∧Rαβ ∧ ϑβ



Cosmological models
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● Earlier PGT cosmology: Minkevich [e.g., 1980, 1983, 1995, 2007] and
Goenner & Müller-Hoissen [1984];
recent: Shie, N & Yo [2008], Wang & Wu [2009], Chen et al [2009], Li,
Sun & Xi [2009ab], Ao, Li & Xi [2010], Baekler, Hehl & N [2011], Ao &
Li [2012], Ho & N [2011, 2012], Tseng, Lee & Geng [2012].

● manifestly homogeneous & isotropic models: Bianchi I & IX
manifestly isotropic orthonormal coframe:

ϑ0 := dt, ϑa := aσa,

where a = a(t) is the scale factor and σj depends on the (never
needed) spatial coordinates in such a way that

dσi = ζǫijkσ
j ∧ σk,

where ζ = 0 for Bianchi I (equivalent to FLRW k = 0, which appears to
describe our physical universe) and ζ = 1 for Bianchi IX (FLRW
k = +1), thus ζ2 = k, the curvature parameter.
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● isotropy =⇒ non-vanishing connection one-form coefficients

Γa
0 = ψ(t)σa, Γa

b = χ(t)ǫabc σ
c,

=⇒ nonvanishing curvature components:

Ra0
b0 = a−1ψ̇δab , Rab

0c = a−1χ̇ǫabc,

Ra0
bc = 2a−2ψ(χ− ζ)ǫabc, Rab

cd = a−2(ψ2 − χ2 + 2χζ)δabcd .

=⇒ scalar and pseudoscalar curvatures:

R = 6[a−1ψ̇ + a−2(ψ2 − [χ− ζ]2 + ζ2)],

X = 6[a−1χ̇+ 2a−2ψ(χ− ζ)].
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● isotropy =⇒ nonvanishing torsion tensor components

T a
b0 = u(t)δab , T a

bc = −2x(t)ǫabc.

they depend on the gauge variables:

u = a−1(ȧ− ψ), x = a−1(χ− ζ).

● isotropy =⇒ energy-momentum tensor has the perfect fluid form with
an energy density and pressure: ρ, p.

✦ When p = 0, the gravitating material behaves like dust with

ρa3 = constant.

● isotropy =⇒ most of the source spin density components vanish. We
assume they all vanish (reasonable except in the very early universe).



effective Lagrangian, eqns
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● The dynamical equations for the homogeneous cosmology can be
obtained by imposing the Bianchi symmetry on the field equations
found by BHN from the BHN Lagrangian density

● These same dynamical equations can be obtained directly from a
classical mechanics type effective Lagrangian, which in this case can
be simply obtained by restricting the BHN Lagrangian density to the
Bianchi symmetry.

● This procedure is known to be successful for all Bianchi class A
models in GR, and it is conjectured to also be true for the PG theory.
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● The effective Lagrangian Leff = LG + Lint includes the interaction
Lagrangian:

Lint = pa3, p = p(t) pressure,

and the gravitational Lagrangian:

LG =
a3

κ

[

−Λ +
a0
2
R+

b0
2
X −

3

2
a2u

2 + 6a3x
2 + 6σ2ux

]

+
a3

̺

[

−
w6

24
R2 +

w3

24
X2 −

µ3

24
RX

]

with a2 < 0, w6 < 0, w3 > 0, −4α := 4w3w6 + µ2 < 0
signs necessary for least action/positive kinetic energy

● In the following we often take for simplicity units such that κ = 1 = ̺.

● For convenience we introduce the modified parameters ã2, ã3, σ̃2 with
the definitions

ã2 := a2 − 2a0, ã3 := a3 −
1

2
a0, σ̃2 := σ2 + b0.



Energy function
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● The energy function obtained from LG is an effective energy; G00, the
“Hamiltonian constraint” with magnitude −a3ρ:

E = a3

{

3

2
ã2u

2 − 3a0H
2 − 6ã3x

2 − 3ã2uH + Λ

+6σ̃2x(H − u)− 3a0
ζ2

a2

−
w6

24

[

R2 − 12R

{

(H − u)2 − x2 +
ζ2

a2

}]

+
w3

24

[

X2 + 24Xx(H − u)
]

−
µ3

24

[

RX − 6X

{

(H − u)2 − x2 +
ζ2

a2

}

+ 12Rx(H − u)

]

}

,

time independent Lagrangian =⇒ work-energy relation:

d(ρa3)

dt
= −p

da3

dt
, if p = 0 = Λ, late-time field fall-off a−3/2



The Dynamical Equations
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● 2nd order Lagrange eqns for ψ, χ and a:

d

dt

∂LG

∂ψ̇
=

d

dt

(

a2
[

3a0 −
w6

2
R−

µ3

4
X
])

=
∂LG

∂ψ

= 3(a2u− 2σ2x)a
2 +

[

6a0 − w6R−
µ3

2
X
]

aψ

+
[

6b0 −
µ3

2
R + w3X

]

a(χ− ζ), =⇒ Ṙ, Ẋ.

d

dt

∂LG

∂χ̇
=

d

dt

(

a2
[

3b0 −
µ3

4
R+

w3

2
X
])

=
∂LG

∂χ

= −6(2a3x+ σ2u)a
2 −

[

6a0 − w6R−
µ3

2
X
]

a(χ− ζ)

+
[

6b0 −
µ3

2
R + w3X

]

aψ, =⇒ Ṙ, Ẋ.
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d

dt

∂LG

∂ȧ
=

d

dt

(

−a23[a2u− 2σ2x]
)

=
∂LG

∂a
+
∂Lint

∂a

= 3a−1L−

(a0
2

−
w6

12
R−

µ3

24
X
)

[a2R+ 6(ψ2 − [χ− ζ]2 + ζ2)]

−

(

b0
2

+
w3

12
X −

µ3

24
R

)

[a2X + 12ψ(χ− ζ)]

+3a2(a2u− 2σ2x)u− 6a2[2a3x+ σ2u]x+ 3pa2, =⇒ u̇, ẋ.

● First order eqns from:

ȧ = aH Hubble relation

ẋ = −Hx−
X

6
− 2x(H − u),

Ḣ − u̇ =
R

6
−H(H − u)− (H − u)2 + x2 −

ζ2

a2
.



First order equations with parity coupling
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ȧ = aH,

Ḣ =
1

6a2
(ã2R− 2σ̃2X)− 2H2 +

ã2 − 4ã3
a2

x2 −
ζ2

a2

+
(ρ− 3p)

3a2
+

4Λ

3a2
,

u̇ = −
1

3a2
(a0R+ σ̃2X)− 3Hu+ u2 −

4a3
a2

x2

+
(ρ− 3p)

3a2
+

4Λ

3a2
,

ẋ = −
X

6
− (3H − 2u)x,

−
w6

2
Ṙ−

µ3

4
Ẋ =

[

3ã2 + w6R+
µ3

2
X
]

u+
[

−6σ̃2 +
µ3

2
R− w3X

]

x

−
µ3

4
Ṙ+

w3

2
Ẋ =

[

−6σ̃2 +
µ3

2
R − w3X

]

u−

[

12ã3 + w6R+
µ3

2
X
]

x

For our numerical evolution we consider only p = 0, dust.
Note obvious special constant curvature solutions.



Isotropic Bianchi V
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Isotropic Bianchi V is equivalent to the FLRW k = −1 model.

It is a class B model; the effective Lagrangian method is not expected to
succeed. Let us try it and see what happens.

Following the above approach with suitably modifications:

Type V coframe
ϑ0 := dt, ϑa := aσa,

where a = a(t) is the scale factor and σj depends on the (never needed)
spatial coordinates in such a way that

dσi = σ1 ∧ σi.

connection one-form components

Γ[ab] := (χǫabc + δabc1)σ
c, Γa

0 := ψσa,

where χ = χ(t), ψ = ψ(t).
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torsion

T 0 = 0, T a = [ȧ− ψ]dt ∧ σa − aχǫabcσ
b ∧ σc, (2-form)

T a
0b = uδab = a−1[ȧ− ψ]δab , T a

bc = −2xǫabc = −2a−1χǫabc,

(frame components)

u = a−1[ȧ− ψ], x = a−1χ. (torsion scalar and pseudoscalar)

Note that a−1ψ = H − u, where H = a−1ȧ is the Hubble function.



Dark 121230 22 / 36

curvature components

Rab
0c = a−1χ̇ǫabc,

Rab
cd = a−2[ψ2 − χ2 − 1],

Ra0
b0 = a−1ψ̇δab ,

Ra0
bc = 2a−1ψχǫabc.

scalar curvature

R = 6[a−1ψ̇ + a−2(ψ2 − χ2 − 1)].

pseudoscalar curvature

X = 6[a−1χ̇+ 2a−2ψχ].



Isotropic Bianchi V energy function &
dynamical equations
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The results obtained from the detailed calculations using the above
effective Lagrangian are similar to those found for the Bianchi I,IX
expressions:

One need merely make the simple replacements χ− ζ → χ, ζ2 = k → −1.

The final equations completely agree with the BHN FLRW k = −1 case.



Hamiltonian formulation

Dark 121230 24 / 36

From the effective Lagrangian we have also found a Hamiltonian
formulation for the manifestly homogeneous-isotropic Bianchi I,V,IX
models.

This is the most powerful formulation for analytical investigations.



Constant Curvature: a special subclass
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From the 6 linear equations, for Ṙ = Ẋ = 0, ⇒ ã2 = 4ã3:

R =
3

α
(w3ã2 − µ3σ̃2) and X =

3

α
(
µ3

2
ã2 + 2w6σ̃2).

In this case the 6 equations reduce to the 4 dynamical equations:

ȧ = aH,

Ḣ = −2H2 −
ζ2

a2
+

(ρ− 3p)

3a2
+

4Λ

3a2
+

1

6a2
(ã2R0 − 2σ̃2X0),

u̇ = −3Hu+ u2 − x2 +
(ρ− 3p)

3a2
+

4Λ

3a2
−

1

3a2
(a0R0 + σ̃2X0),

ẋ = −
X

6
− (3H − 2u)x,

along with the energy with constant curvatures R0 and X0:

E = −a3ρ = a3
[

3w3

8α
(ã2 −

µ3σ̃2
w3

)2 +
3σ̃2

2

8w3
−

3

2
a2(H

2 +
k

a2
) + Λ

]

,

To have a positive ρ (with vanishing Λ, ζ) we tried evolution with some
“unphysical” parameter values; it is unstable.
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Linearized first order equations
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ȧ = aH,

3a2Ḣ =
1

2
ã2R− σ̃2X,

3a2u̇ = −a0R− σ̃2X,

ẋ = −
X

6
,

−
w6

2
Ṙ−

µ3
4
Ẋ = 3ã2u− 6σ̃2x,

−
µ3
4
Ṙ+

w3

2
Ẋ = −6σ̃2u− 12ã3x,

the associated “energy”

E = a3

{

3

2
ã2u

2 − 3a0H
2 − 6ã3x

2 − 3uHã2

+6σ̃2x(H − u)−
w6

24
R2 +

w3

24
X2 −

µ3
24
RX

}

.



normal modes
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The variable combination

z := a0H +
ã2
2
u− σ̃2x,

to linear order is constant. It describes a zero frequency normal mode.

Two pairs of equations have a neat matrix form:

T

(

Ṙ

Ẋ

)

= −6M

(

u
x

)

,

(

u̇
ẋ

)

= −N

(

R
X

)

,

which combine to give a 2nd order system:

T

(

R̈

Ẍ

)

= −V

(

R
X

)

,

The matrices T,V turn out to be symmetric, so a standard technique gives
2 orthogonal normal modes and their eigenfrequencies.



Late time asymptotical expansion
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● At late times the scale factor a is large. For Λ = 0 the quadratic terms
will dominate, then H, u, x, R, and X should have a a−3/2 fall off. Let

H = Ha−3/2, u = ua−3/2, x = xa−3/2, R = Ra−3/2, X = Xa−3/2,

dropping higher order terms, gives 6 linear equations with odd parity
coupling:

ȧ = a−1/2H, Ḣ =
1

6a2
[ã2R− 2σ̃2X],

ẋ = −
X

6
, u̇ = −

1

3a2
[a0R+ σ̃2X],

Ṙ =
6

α
[(w3ã2 − µ3σ̃2)u− 2(w3σ̃2 + µ3ã3)x] ,

Ẋ =
6

α
[(2w6σ̃2 +

1

2
µ3ã2)u+ (4w6ã3 − µ3σ̃2)x],

plus the energy constraint

−a3κρ =
3ã2
2

(H−u)2−
3

2
a2H

2+6σ̃2x(H−u)−6ã3x
2+

w3

24
X2

−
w6

24
R2

−
µ3

24
RX.



Linear late time evolution
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The effect of odd coupling parameters:
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Typical time evolution:
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supernova distance modulus µ vs redshift z

Dark 121230 33 / 36

◦◦◦
◦

◦
◦

◦
◦

◦◦

◦
◦
◦◦◦
◦◦
◦◦◦

◦

◦

◦
◦
◦
◦

◦

◦

◦ ◦

◦

◦◦
◦

◦
◦◦

◦

◦

◦

◦

◦

◦
◦◦

◦
◦

◦
◦

◦

◦

◦

◦◦

◦

◦◦
◦

◦ ◦

◦

◦◦

◦◦

◦◦
◦

◦

◦
◦
◦
◦◦

◦
◦

◦
◦

◦
◦
◦

◦

◦

◦ ◦
◦

◦

◦
◦

◦

◦

◦
◦ ◦◦◦

◦
◦
◦
◦

◦
◦

◦◦

◦
◦
◦

◦◦
◦
◦

◦

◦

◦◦◦
◦

◦

◦
◦

◦
◦
◦
◦
◦
◦◦

◦◦◦ ◦
◦

◦ ◦

◦
◦

◦◦
◦◦◦◦

◦ ◦

◦ ◦◦
◦

◦
◦ ◦◦

◦
◦ ◦◦

◦
◦ ◦

◦

◦

◦

◦

◦ ◦ ◦

◦◦

◦
◦◦ ◦◦

0 0.5 1.0 1.5 2.0
30

35

40

45

z

μ

Case I
Case II
ΛCDM

0 1 2
0

0.1

0.2

0.3

z

Δμ

Figure 2:
Supernovae data (brown) circles. Standard ΛCDM model (Ωm = 0.3,

ΩΛ = 0.7) bold solid line. Scalar models I, II, and III: red dashed line, the
green dot-dashed line, and the blue dotted line. Inset, the models and

data relative to an empty universe model (Ω = 0).
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● We considered the dynamics of the BHN model in the context of
manifestly homogeneous and isotropic Bianchi I, V & IX cosmologies.

● The BHN cosmological system of ODEs resemble those of a particle
with 3 degrees of freedom. Putting the homogeneous & isotropic
Bianchi I, V and IX symmetry into the BHN PG theory Lagrangian
density leads to an effective Lagrangian which directly gives the
evolution equations. We also obtained the associated Hamilton
equations.

● Imposing symmetries and variations do not commute in general. For
GR they commute for all Bianchi class A models. Here, for the BHN
PG model we found that they commute for the class A isotropic
Bianchi I and IX, (≡ FLRW k = 0 and k = +1) models and,
surprisingly, also for the class B isotropic Bianchi V Model (FLRW
k = −1).
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● The system of first order equations obtained from an effective
Lagrangian was linearized, the normal modes were identified, and it
was shown analytically how they control the late time asymptotics.

● numerical evolution examples show that the late time linear mode
approximation is good,

● In these models, at late times the acceleration oscillates. It can be
positive at the present time.

● The scalar and pseudoscalar torsion modes do not directly couple to
any known form of matter,

● the scalar mode does couple directly to the Hubble expansion, and
thus it can directly influence the acceleration of the universe.
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