

Global Constraints on Effective Dark Matter Interactions

Speaker:Po-Yan Tseng (NTHU) Kingman Cheung, Yue-Lin S. Tsai, Tzu-Chiang Yuan JCAP 1205 (2012) 001

3rd International Workshop on

Dark Matter, Dark Energy and Matter-Antimatter Asymmetry

2012.12.31

Outline

- Introduction
- Effective Dark Matter Interactions
- Experimental constraints
- Conclusions

• DM evidence from the astronomy observations.

Vera Rubin 1970 Fritz Zwicky

Wikipedia.org

Hubble Telescope

• In darkon model, there is a real-scalar boson *D* and couple to SM particle via Higgs boson *H*

$$\mathcal{L}_D = -\frac{\lambda_D}{4}D^4 - \frac{m_D^2}{2}D^2 - \lambda D^2 H^{\dagger}H \; .$$

• The amplitude of $DD \rightarrow f\overline{f}$

$$\mathcal{L} = \frac{gm_f}{2m_W} \bar{f} f \, \frac{1}{(2m_D)^2 - m_h^2} \, \lambda v D^2 \, .$$

• In the limit $m_H \gg m_D$

$$\mathcal{L} = C \frac{m_f}{\Lambda^2} \, (\bar{f}f) D^2$$

dim 5 effective, contact interaction.

Another example, Z−Z' portal model. The fermionic DM X interact with SM particle via heavy Z' mixing with Z.

$$\mathcal{L} = \bar{\chi}\gamma^{\mu}(g_v^{\chi} - g_a^{\chi}\gamma^5)\chi Z_{\mu} + \bar{f}\gamma^{\mu}(g_v^f - g_a^f\gamma^5)f Z_{\mu}$$

• The amplitude of $\chi \chi \rightarrow f f$ in the limit $m_Z \gg m_{\chi}$

$$\mathcal{L} \sim \frac{g_v^{\chi} g_v^f}{m_Z^2} \left(\bar{\chi} \gamma^{\mu} \chi \right) \left(\bar{f} \gamma_{\mu} f \right) + \frac{g_v^{\chi} g_a^f}{m_Z^2} \left(\bar{\chi} \gamma^{\mu} \chi \right) \left(\bar{f} \gamma_{\mu} \gamma^5 f \right) + \frac{g_a^{\chi} g_v^f}{m_Z^2} \left(\bar{\chi} \gamma^{\mu} \gamma^5 \chi \right) \left(\bar{f} \gamma_{\mu} f \right) + \frac{g_a^{\chi} g_a^f}{m_Z^2} \left(\bar{\chi} \gamma^{\mu} \gamma^5 \chi \right) \left(\bar{f} \gamma_{\mu} \gamma^5 f \right)$$

Effective Dark Matter Interactions

• Fermionic DM \mathscr{X} interaction with pair of Fermion f via vector, axial-vector, and tensor exchange. $\rho = \sum_{i=1}^{\frac{c_{1}}{c_{1}}} (\bar{r}_{2} f_{i})^{i} (\bar{r}_{2} f_{i})^{i}$

$$O_{1} = \sum_{f} \frac{C_{1}^{f}}{\Lambda_{1}^{2}} (\bar{\chi}\gamma^{\mu}\chi) (\bar{f}\gamma_{\mu}f) ,$$

$$O_{2} = \sum_{f} \frac{C_{2}^{f}}{\Lambda_{2}^{2}} (\bar{\chi}\gamma^{\mu}\gamma^{5}\chi) (\bar{f}\gamma_{\mu}f) ,$$

$$O_{3} = \sum_{f} \frac{C_{3}^{f}}{\Lambda_{3}^{2}} (\bar{\chi}\gamma^{\mu}\chi) (\bar{f}\gamma_{\mu}\gamma^{5}f) ,$$

$$O_{4} = \sum_{f} \frac{C_{4}^{f}}{\Lambda_{4}^{2}} (\bar{\chi}\gamma^{\mu}\gamma^{5}\chi) (\bar{f}\gamma_{\mu}\gamma^{5}f) ,$$

$$O_{5} = \sum_{f} \frac{C_{5}^{f}}{\Lambda_{5}^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi) (\bar{f}\sigma_{\mu\nu}f) ,$$

$$O_{6} = \sum_{f} \frac{C_{6}^{f}}{\Lambda_{6}^{2}} (\bar{\chi}\sigma^{\mu\nu}\gamma^{5}\chi) (\bar{f}\sigma_{\mu\nu}f) ,$$

• For Majorana DM, operator O1, O3, O5, and O6 are zero.

• Fermionic DM \mathcal{X} via (pseudo-)scalar exchange.

$$O_{7} = \sum_{f} \frac{C_{7}^{f} m_{f}}{\Lambda_{7}^{3}} (\bar{\chi}\chi) (\bar{f}f) ,$$

$$O_{8} = \sum_{f} \frac{iC_{8}^{f} m_{f}}{\Lambda_{8}^{3}} (\bar{\chi}\gamma^{5}\chi) (\bar{f}f) ,$$

$$O_{9} = \sum_{f} \frac{iC_{9}^{f} m_{f}}{\Lambda_{9}^{3}} (\bar{\chi}\chi) (\bar{f}\gamma^{5}f) ,$$

$$O_{10} = \sum_{f} \frac{C_{10}^{f} m_{f}}{\Lambda_{10}^{3}} (\bar{\chi}\gamma^{5}\chi) (\bar{f}\gamma^{5}f) .$$

• The fermion mass m_f dependent is included in the coupling.

• Fermionic DM \mathcal{X} could also couple to gluon fields.

$$\begin{aligned} O_{11} &= \frac{C_{11}}{\Lambda_{11}^3} (\bar{\chi}\chi) \left(-\frac{\alpha_s}{12\pi} G^{\mu\nu} G_{\mu\nu} \right), \\ O_{12} &= \frac{iC_{12}}{\Lambda_{12}^3} (\bar{\chi}\gamma^5 \chi) \left(-\frac{\alpha_s}{12\pi} G^{\mu\nu} G_{\mu\nu} \right), \\ O_{13} &= \frac{C_{13}}{\Lambda_{13}^3} (\bar{\chi}\chi) \left(\frac{\alpha_s}{8\pi} G^{\mu\nu} \tilde{G}_{\mu\nu} \right), \\ O_{14} &= \frac{iC_{14}}{\Lambda_{14}^3} (\bar{\chi}\gamma^5 \chi) \left(\frac{\alpha_s}{8\pi} G^{\mu\nu} \tilde{G}_{\mu\nu} \right). \end{aligned}$$

• The $\alpha_s(2m_{\chi})$ is the strong coupling constant, because operators may from one-loop at scale $2m_{\chi}$

• Finally are the operators for complex scalar DM.

$$O_{15} = \sum_{f} \frac{iC_{15}^{f}}{\Lambda_{15}^{2}} \left(\chi^{\dagger} \overleftrightarrow{\partial_{\mu}} \chi\right) (\bar{f} \gamma^{\mu} f) ,$$

$$O_{16} = \sum_{f} \frac{iC_{16}^{f}}{\Lambda_{16}^{2}} \left(\chi^{\dagger} \overleftrightarrow{\partial_{\mu}} \chi\right) (\bar{f} \gamma^{\mu} \gamma^{5} f) ,$$

$$O_{17} = \sum_{f} \frac{C_{17}^{f} m_{f}}{\Lambda_{17}^{2}} \left(\chi^{\dagger} \chi\right) (\bar{f} f) ,$$

$$O_{18} = \sum_{f} \frac{iC_{18}^{f} m_{f}}{\Lambda_{18}^{2}} \left(\chi^{\dagger} \chi\right) (\bar{f} \gamma^{5} f) ,$$

$$O_{19} = \frac{C_{19}}{\Lambda_{19}^{2}} \left(\chi^{\dagger} \chi\right) \left(-\frac{\alpha_{s}}{12\pi} G^{\mu\nu} G_{\mu\nu}\right) ,$$

$$O_{20} = \frac{C_{20}}{\Lambda_{20}^{2}} \left(\chi^{\dagger} \chi\right) \left(\frac{\alpha_{s}}{8\pi} G^{\mu\nu} \tilde{G}_{\mu\nu}\right) .$$

• For real scalar DM, O15 and O16 are zero.

Operator	NR Limit	\mathbf{SI}	SD	$\mathrm{Dirac}/\mathrm{Complex}$	Majorana/Real	NR Limit $\langle \sigma^{\rm anni} v \rangle$
	(Direct Detection)					(Relic Density)
<i>O</i> ₁	Yes	Yes	No	Yes	No	$\frac{N_C m_{\chi}^2}{\pi \Lambda_1^4}$
O_2	No			Yes	Yes	$\frac{N_C m_\chi^2 v^2}{6\pi \Lambda_2^4}$
O_3	No			Yes	No	$\frac{N_C m_{\chi}^2}{\pi \Lambda_3^4}$
O_4	Yes	No	Yes	Yes	Yes	$\frac{N_C m_{\chi}^2 v^2}{6\pi \Lambda_4^4}$
O_5	Yes	No	Yes	Yes	No	$\frac{2N_C m_{\chi}^2}{\pi \Lambda_5^4}$
O_6	No			Yes	No	$\frac{2N_Cm_\chi^2}{\pi\Lambda_6^4}$
O_7	Yes	Yes	No	Yes	Yes	$\frac{N_C m_f^2 m_\chi^2 v^2}{8\pi\Lambda_7^6}$
O_8	No			Yes	No	$\frac{N_C m_f^2 m_\chi^2}{2\pi \Lambda_8^6}$
O_9	No			Yes	Yes	$\frac{N_C m_f^2 m_\chi^2 v^2}{8\pi \Lambda_9^6}$
<i>O</i> ₁₀	No			Yes	No	$\frac{N_C m_f^2 m_\chi^2}{2\pi \Lambda_{10}^6}$

<i>O</i> ₁₁	Yes	Yes No	Yes	Yes	$\frac{\alpha_s^2 m_\chi^4 v^2}{288 \pi^3 \Lambda_{11}^6}$
O_{12}	No		Yes	No	$\frac{\alpha_s^2 m_\chi^4}{72\pi^3 \Lambda_{12}^6}$
<i>O</i> ₁₃	No		Yes	Yes	$\frac{\alpha_{s}^{2}m_{\chi}^{4}v^{2}}{128\pi^{3}\Lambda_{13}^{6}}$
O_{14}	No		Yes	No	$\frac{\alpha_s^2 m_\chi^4}{32\pi^3 \Lambda_{14}^6}$
<i>O</i> ₁₅	Yes	Yes No	Yes	No	$\frac{N_C m_\chi^2 v^2}{6\pi \Lambda_{15}^4}$
O_{16}	No		Yes	No	$\frac{N_C m_\chi^2 v^2}{6\pi \Lambda_{16}^4}$
<i>O</i> ₁₇	Yes	Yes No	Yes	Yes	$\frac{N_C m_f^2}{4\pi \Lambda_{17}^4}$
O_{18}	No		Yes	Yes	$\frac{N_C m_f^2}{4\pi \Lambda_{18}^4}$
<i>O</i> ₁₉	Yes	Yes No	Yes	Yes	$\frac{\alpha_s^2 m_\chi^2}{144 \pi^3 \Lambda_{19}^4}$

- In non-relativistic limit, the spinor for χ and $\overline{\chi}$ are $\psi = \xi \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix}$, $\overline{\psi} = \eta^{\dagger}(\varepsilon, 1) \gamma^{0}$, where $\varepsilon \approx O(v/c)$.
- For $\overline{\psi}\gamma^{\mu}\psi$ written as $\overline{\psi}\gamma^{0}\psi \simeq 2\epsilon\eta^{\dagger}\xi$ $\overline{\psi}\gamma^{i}\psi \simeq (1+\epsilon^{2})\eta^{\dagger}\sigma_{i}\xi$
- For $\overline{\psi}\gamma^{\mu}\gamma^{5}\psi$ written as $\overline{\psi}\gamma^{0}\gamma^{5}\psi \simeq (1+\epsilon^{2})\eta^{\dagger}\xi$ $\overline{\psi}\gamma^{i}\gamma^{5}\psi \simeq 2\epsilon\eta^{\dagger}\sigma_{i}\xi$
- Contract with the light fermion leg $f\gamma^{\mu}f$ or $\overline{f}\gamma^{\mu}\gamma^{5}f$, the time-like part give almost zero the space-like part give m_{χ}^{2} .

Experimental constraints

• CDM relic density, from the CMB by WMAP7

 $\Omega_{\rm CDM} h^2 = 0.1126 \pm 0.0036 \; ,$

where h is the Hubble rate in unit of 100km/Mpc/s.

 Relation between DM relic density and thermal annihilation cross section around the time of freeze-out.

$$\Omega_{\chi} h^2 \simeq \frac{0.1 \text{ pb}}{\langle \sigma v \rangle}$$

• 2 σ Upper limit of Λ from WMAP7.

- Direct detection. XENON100 for spinindependent(SI) DM-nucleus cross section σ_{SI} and XENON10, ZEPLIN, SIMPLE for spindependent(SD) cross section σ_{SD}
- 01, 07, 011, 015, 017, 019 will give the SI DMnucleus interaction.
- 04, 05 give the SD one.

• 2 σ lower limit of Λ from direct detection.

• Monojet and monophoton + missing ET constraints from CDF, D0, Tevetron, ATLAS.

 For example, ATLAS observed 167 events and the expected SM background is 193±15±20. The chi-square is

$$\chi^2 = \frac{(N(\Lambda) + N_{SM} - N_{obs})^2}{(15^2 + 20^2 + 167)}$$

• 2 σ lower limit of $\Lambda\,$ from colliders.

 Indirect detection: cosmic gamma-ray and antiproton flux from Fermi-LAT and PAMELA, respectively.

PAMELA PRL 105 (2010) 121101

Fermi-LAT PRL 104 (2010) 101101

- The final state quarks from DM annihilation can fragment into neutral pion π^0 , then π^0 decay into two photons. The final state quark can fragment into anti-proton as well.
- If these are e[±] been produced from DM annihilation. e[±] could produced gamma-ray flux by inverse Compton scattering or bremsstrahlung.

• 2 σ lower limit of Λ from gamma-ray.

• 2 σ lower limit of Λ from anti-proton.

- We combined the all the experimental constraints except the DM relic density from WMAP, because it constrain the opposite direction from others.
- We add up the chi-square from each experiments and require the $\Delta \chi^2 = 4$ to obtain the 2 σ lower limit of Λ .

 $\chi^{2}(\text{total}) = \chi^{2}(\text{direct}) + \chi^{2}(\text{collider}) + \chi^{2}(\text{gamma}) + \chi^{2}(\text{antiproton})$

$$\Delta \chi^2 \equiv \chi^2 (\text{total}) - \chi^2 (\text{total})_{\min} = 4$$

• Combined limits of O1 and O2.

 Only O2, O9, O16 have the allowed region to give the right thermal relic density under the direct, indirect detection, and collider constraints.

Conclusions

Conclusions

- dominated by direct detection: O_7, O_{15}
- by collider: $O_2, O_9, O_{13}, O_{14}, O_{16}$
- by indirect detection (\bar{p} and γ -ray): $O_1, O_3, O_4, O_5, O_6, O_8, O_{10}, O_{17}, O_{18}, O_{20}$
- by collider at low m_{χ} and direct detection at high m_{χ} : O_{11}
- by collider at low m_{χ} and indirect detection at high m_{χ} : O_{12}
- by indirect detection at low m_{χ} and direct detection at high m_{χ} : O_{19}
- O2, O9, O16, in non-relativistic limit, are highly suppressed and cannot contribute to direct and indirect detection significant.

Conclusions

 We consider one operator at once in this work. The results may change, if there are several operators appear at the same time.

Thank you !

Happy New Year 2013