Chung-Lin Shan

3rd International Workshop on Dark Matter, Dark Energy, and Matter-Antimatter Asymmetry December 31, 2012

Model-independent data analysis – formalism Reconstruction of the WIMP velocity distribution

Determinations of the WIMP mass and the mass splitting Reconstruction of the recoil spectrum

Numerical results

Reconstruction of the recoil spectrum

Identification of the inelastic scattering

Determinations of the WIMP mass and the mass splitting

Summary and outlook

• WIMP-nucleus scattering

- DAMA: 11-year annual modulation observation
- CoGeNT: a modulated component of unknown origin (modified somehow recently)
- CRESST-II: more observed nuclear recoil events than expected backgrounds

↕

• CDMS-II, XENON100, ZEPLIN-II: non-observations (a few candidate events)

• WIMP-nucleus scattering

- DAMA: 11-year annual modulation observation
- CoGeNT: a modulated component of unknown origin (modified somehow recently)
- CRESST-II: more observed nuclear recoil events than expected backgrounds

↕

• CDMS-II, XENON100, ZEPLIN-II: non-observations (a few candidate events)

• Differential event rate for elastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^{2}(Q)\int_{v_{\min}(Q)}^{v_{\max}} \left[\frac{f_{1}(v)}{v}\right] dv$$

Here

$$v_{\min}(Q) = \alpha \sqrt{Q}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_\chi m_{\rm r,N}^2} \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \qquad m_{\rm r,N} = \frac{m_\chi m_{\rm N}}{m_\chi + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth

 σ_0 : total cross section ignoring the form factor suppression

- F(Q): elastic nuclear form factor
- $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

• Differential event rate for inelastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^{2}(Q)\int_{v_{\min}(Q)}^{v_{\max}} \left[\frac{f_{1}(v)}{v}\right] dv$$

Here

$$v_{\min}(Q) = \alpha \sqrt{Q} + \frac{\alpha_{\delta}}{\sqrt{Q}}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi} m_{\rm r,N}^2} \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \alpha_{\delta} \equiv \frac{\delta}{\sqrt{2m_{\rm N}}} \qquad m_{\rm r,N} = \frac{m_{\chi} m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth

 σ_0 : total cross section ignoring the form factor suppression

- F(Q): elastic nuclear form factor
- $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

Model-independent data analysis - formalism

Reconstruction of the WIMP velocity distribution

Reconstruction of the WIMP velocity distribution - inelastic scattering

• Normalized one-dimensional WIMP velocity distribution function

$$f_{1}(v) = \mathcal{N}\left\{\left(\alpha\sqrt{Q} + \frac{\alpha_{\delta}}{\sqrt{Q}}\right)\left(\alpha\sqrt{Q} - \frac{\alpha_{\delta}}{\sqrt{Q}}\right)^{-1}\left\{-2Q \cdot \frac{d}{dQ}\left[\frac{1}{F^{2}(Q)}\left(\frac{dR}{dQ}\right)\right]\right\}\right\}$$

with

$$Q(v) = \frac{v^2 - 2\alpha\alpha_{\delta} \pm v\sqrt{v^2 - 4\alpha\alpha_{\delta}}}{2\alpha^2}$$

and

$$\mathcal{N} = 2\left\{\int_0^\infty \left[\frac{1}{Q}\left(\alpha\sqrt{Q} - \frac{\alpha_\delta}{\sqrt{Q}}\right)\right] \left[\frac{1}{F^2(Q)}\left(\frac{dR}{dQ}\right)\right] dQ\right\}^{-1}$$

Model-independent data analysis - formalism

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Threshold (minimal required) velocity of incident inelastic WIMPs

•
$$v_{\min}(Q) = \alpha \sqrt{Q} + \frac{\alpha_{\delta}}{\sqrt{Q}}$$

 $Q(v) = \frac{v^2 - 2\alpha \alpha_{\delta} \pm v \sqrt{v^2 - 4\alpha \alpha_{\delta}}}{2\alpha^2}$

•
$$v_{\text{thre}} = 2\sqrt{\alpha \alpha_{\delta}}$$

 $Q_{v_{\text{thre}}} \equiv Q(v = v_{\text{thre}}) = \frac{\alpha_{\delta}}{\alpha} = \left(\frac{m_{\chi}}{m_{\chi} + m_{N}}\right) \delta$

• Determining m_{χ} and δ (by combining two targets)

$$m_{\chi} = \frac{Q_{v_{\text{thre}},Y}m_{Y} - Q_{v_{\text{thre}},X}m_{X}}{Q_{v_{\text{thre}},X} - Q_{v_{\text{thre}},Y}}$$
$$\delta = \frac{Q_{v_{\text{thre}},X}Q_{v_{\text{thre}},Y}(m_{Y} - m_{X})}{Q_{v_{\text{thre}},Y}m_{Y} - Q_{v_{\text{thre}},X}m_{X}}$$

Model-independent data analysis - formalism

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Differential event rate for inelastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^{2}(Q)\int_{v_{\min}(Q)}^{v_{\max}} \left[\frac{f_{1}(v)}{v}\right] dv$$

Here

$$v_{\min}(Q) = \alpha \sqrt{Q} + rac{lpha_{\delta}}{\sqrt{Q}}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi} m_{\rm r,N}^2} \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \alpha_{\delta} \equiv \frac{\delta}{\sqrt{2m_{\rm N}}} \qquad m_{\rm r,N} = \frac{m_{\chi} m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth

 σ_0 : total cross section ignoring the form factor suppression

- F(Q): elastic nuclear form factor
- $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

Model-independent data analysis - formalism

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Differential event rate for inelastic WIMP-nucleus scattering

$$\left(\frac{dR}{dQ}\right)_{Q=Q_{v_{thre}}} = \mathcal{A}F^{2}(Q_{v_{thre}})\left(\int_{v_{thre}}^{v_{max}} \left[\frac{f_{1}(v)}{v}\right] dv\right)_{maxim}$$

maximal, indep't. of $f_1(v)$

Here

$$v_{\min}(Q) = \alpha \sqrt{Q} + rac{lpha_{\delta}}{\sqrt{Q}}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector.

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi} m_{\rm r,N}^2} \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \alpha_{\delta} \equiv \frac{\delta}{\sqrt{2m_{\rm N}}} \qquad m_{\rm r,N} = \frac{m_{\chi} m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth

 $\sigma_0:$ total cross section ignoring the form factor suppression

- F(Q): elastic nuclear form factor
- $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

- Model-independent data analysis - formalism

Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum - elastic scattering

Integrals over two simplest theoretical velocity distributions

$$\begin{pmatrix} \frac{dR}{dQ} \end{pmatrix}_{\text{Gau}} \propto F^2(Q) e^{-\alpha^2 Q/v_0^2} \\ \left(\frac{dR}{dQ} \right)_{\text{sh}} \propto F^2(Q) \left[\text{erf} \left(\frac{\alpha \sqrt{Q} + v_e}{v_0} \right) - \text{erf} \left(\frac{\alpha \sqrt{Q} - v_e}{v_0} \right) \right]$$

• Exponential ansatz for reconstructing the measured recoil spectrum (in the *n*th *Q*-bin)

$$\left(\frac{dR}{dQ}\right)_{\text{expt, }Q\simeq Q_n} \equiv r_n e^{k_n(Q-Q_{s,n})} \qquad r_n \equiv \frac{N_n}{b_n}$$

• Logarithmic slope and shifted point (in the *n*th *Q*-bin)

$$\overline{Q-Q_n}|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2}\right) \coth\left(\frac{k_n b_n}{2}\right) - \frac{1}{k_n}$$

$$Q_{s,n} = Q_n + \frac{1}{k_n} \ln \left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2} \right]$$

[M. Drees and CLS, JCAP 0706, 011]

- Model-independent data analysis formalism
 - Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum - inelastic scattering

• Integrals over two simplest theoretical velocity distributions

$$\begin{pmatrix} \frac{dR}{dQ} \end{pmatrix}_{\text{in, Gau}} \propto F^2(Q) e^{-\left(\alpha^2 Q + \alpha_{\delta}^2/Q\right)/v_0^2} \\ \left(\frac{dR}{dQ}\right)_{\text{in, sh}} \propto F^2(Q) \left[\text{erf}\left(\frac{\alpha\sqrt{Q} + \alpha_{\delta}/\sqrt{Q} + v_e}{v_0}\right) - \text{erf}\left(\frac{\alpha\sqrt{Q} + \alpha_{\delta}/\sqrt{Q} + v_e}{v_0}\right) \right]$$

• Typical recoil spectrum

• 2-para. exp. ansatz for reconstructing the measured recoil spectrum

$$\left(\frac{dR}{dQ}\right)_{\text{in, expt}} = r_0 e^{-kQ-k'/Q} \qquad r_0 = \frac{N_{\text{tot}}}{\mathcal{E} \int_{Q_{\text{min}}}^{Q_{\text{max}}} e^{-kQ-k'/Q} dQ}$$

Model-independent data analysis - formalism

Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum - inelastic scattering

• Moments of the 2-parameter exponential recoil spectrum

$$\int \frac{1}{\sqrt{x}} e^{-ax-b/x} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \left[e^{2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} + \frac{\sqrt{b}}{\sqrt{x}}\right) + e^{-2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} - \frac{\sqrt{b}}{\sqrt{x}}\right) \right]$$

$$\int \sqrt{x} e^{-ax-b/x} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \left\{ \frac{1}{2a} \left[e^{2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} + \frac{\sqrt{b}}{\sqrt{x}}\right) + e^{-2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} - \frac{\sqrt{b}}{\sqrt{x}}\right) \right] - \sqrt{\frac{b}{a}} \left[e^{2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} + \frac{\sqrt{b}}{\sqrt{x}}\right) - e^{-2\sqrt{a}\sqrt{b}} \operatorname{erf}\left(\sqrt{a}\sqrt{x} - \frac{\sqrt{b}}{\sqrt{x}}\right) \right] \right\} - \frac{1}{a} \left(\sqrt{x} e^{-ax-b/x}\right)$$

• Infinite moments of the 2-parameter exponential recoil spectrum $(Q_{\min} \rightarrow 0, Q_{\max} \rightarrow \infty, v_{\max} \rightarrow \infty)$

$$\langle 1/\sqrt{x} \rangle_{\inf} \equiv \int_0^\infty \frac{1}{\sqrt{x}} e^{-ax-b/x} dx = \sqrt{\frac{\pi}{a}} e^{-2\sqrt{a}\sqrt{b}}$$
$$\langle \sqrt{x} \rangle_{\inf} \equiv \int_0^\infty \sqrt{x} e^{-ax-b/x} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{a}\sqrt{b}} \left(\sqrt{\frac{b}{a}} \cdot 2 + \frac{1}{a} \right)$$

- Model-independent data analysis formalism
 - Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum - inelastic scattering

• Estimating k and k' analytically

$$\begin{aligned} k_{\text{ana}} &= \frac{1}{2} \left(\frac{\left\langle Q^{-1/2} \right\rangle_{\inf} \left\langle Q^{-3/2} \right\rangle_{\inf}}{\left\langle Q^{1/2} \right\rangle_{\inf} \left\langle Q^{-3/2} \right\rangle_{\inf} - \left\langle Q^{-1/2} \right\rangle_{\inf}^2} \right) \qquad k_{\text{ana}}' &= \frac{1}{2} \left(\frac{\left\langle Q^{-1/2} \right\rangle_{\inf} \left\langle Q^{-3/2} \right\rangle_{\inf}}{\left\langle Q^{-1/2} \right\rangle_{\inf} \left\langle Q^{-5/2} \right\rangle_{\inf} - \left\langle Q^{-3/2} \right\rangle_{\inf}^2} \right) \\ &\left\langle Q^{\lambda} \right\rangle_{\inf} &\equiv \frac{\int_0^\infty Q^{\lambda} \left(dR/dQ \right)_{\text{in, expt}} dQ}{\int_0^\infty \left(dR/dQ \right)_{\text{in, expt}} dQ} \rightarrow \frac{1}{N_{\text{tot}}} \sum_a Q_a^{\lambda} \end{aligned}$$

• Solving k and k' numerically (with k_{ana} and k'_{ana} as the starting point)

= 0

$$\left\langle Q^{\lambda} \right\rangle (k_{\text{num}}, k_{\text{num}}') = \frac{\left\langle x^{\lambda} \right\rangle (k_{\text{num}}, k_{\text{num}}'; x = Q_{\text{max}}) - \left\langle x^{\lambda} \right\rangle (k_{\text{num}}, k_{\text{num}}'; x = Q_{\text{min}})}{\int_{Q_{\text{min}}}^{Q_{\text{max}}} e^{-k^* x - k'^* / x} dx}$$

Equation for solving
$$Q_{v_{\text{thre}}}$$

 $\left(k - \frac{k'}{Q_{v_{\text{thre}}}^2}\right) + \frac{2}{F\left(Q_{v_{\text{thre}}}\right)} \left(\frac{dF}{dQ}\right)_{Q=Q_{v_{\text{thre}}}}$

Numerical results

- -Numerical results
 - -Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum

Measured recoil spectrum

(⁷⁶Ge, 0 – 150 keV, 50 events, $m_{\chi, \rm in} =$ 100 GeV, $\delta_{\rm in} =$ 25 keV) 76 Ge, $Q_{max} < 150$ keV, 50 events, $\sigma_{\chi p}^{SI} = 10^{-6}$ pb, $m_{\chi} = 100$ GeV, $\delta = 25$ keV AMIDAS-i http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas-i/ . ____ (dR/dQ)_{stanal} (dR/dQ)_{measured} 3.5 2-para. exp (analytic) dR/dQ [x 10⁻³ events/kg-day/keV] para. exp (numerical, 1st) para, exp (numerical, final) 3 2.5 2 1.5 0.5 0 20 90 100 110 130 140 10 30 60 70 80 120 150 Q [keV]

- -Numerical results
 - Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum

• Distribution of the reconstructed $k_{\rm rec}$

 $(^{76}$ Ge, 0 – 150 keV, 50 events, $m_{\chi,in} = 100$ GeV, $\delta_{in} = 25$ keV)

- -Numerical results
 - Reconstruction of the recoil spectrum

• Distribution of the reconstructed k'_{rec}

 $(^{76}$ Ge, 0 – 150 keV, 50 events, $m_{\chi,in} = 100$ GeV, $\delta_{in} = 25$ keV)

- -Numerical results
 - Reconstruction of the recoil spectrum

• Distribution of the reconstructed Q_{Vthre,rec}

 $(^{76}$ Ge, 0 – 150 keV, 50 events, $m_{\chi,in} = 100$ GeV, $\delta_{in} = 25$ keV)

- Numerical results
 - Reconstruction of the recoil spectrum

Reconstruction of the recoil spectrum

Measured recoil spectrum

0 10 20

0

30

 $(^{76}\text{Ge}, 0 - 150 \text{ keV}, 50 \text{ events}, m_{\chi,\text{in}} = 100 \text{ GeV}, \delta_{\text{in}} = 10 \text{ keV})$ 76 Ge, $Q_{max} < 150$ keV, 50 events, $\sigma_{\chi p}^{SI} = 10^{-6}$ pb, $m_{\chi} = 100$ GeV, $\delta = 10$ keV AMIDAS-i http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas-i/ . ____ (dR/dQ)_{stanal} 10 (dR/dQ)_{measured} 2-para. exp (analytic) IR/dQ [x 10⁻³ events/kg-day/keV] para. exp (numerical, 1st) 2-para, exp (numerical, final)

> 70 80 90 100 110 120 130 140 150

Q [keV]

December 31, 2012, p. 19

- -Numerical results
 - Reconstruction of the recoil spectrum

• Distribution of the reconstructed Q_{vthre},rec

 $(^{76}$ Ge, 0 – 150 keV, 50 events, $m_{\chi,in} = 100$ GeV, $\delta_{in} = 10$ keV)

- -Numerical results
 - Lentification of the inelastic scattering

• $Q_{v_{thre}, rec}$ in unit of $\sigma(Q_{v_{thre}, rec})$

 $(^{76}Ge, 0 - 150 \text{ keV}, 50 \text{ events, numerical})$

- -Numerical results
 - Lentification of the inelastic scattering

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- -Numerical results
 - Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- -Numerical results
 - Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- -Numerical results
 - Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- -Numerical results
 - Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- -Numerical results
 - Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Reconstructed δ_{rec}

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Distribution of the reconstructed $\delta_{\rm rec}$

(28 Si + 76 Ge, 0 – 150 keV, 2 imes 50 events, $m_{\chi, {
m in}} =$ 100 GeV, $\delta_{
m in} =$ 25 keV)

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Distribution of the reconstructed $\delta_{\rm rec}$

(28 Si + 76 Ge, 0 – 150 keV, 2 imes 50 events, $m_{\chi, {
m in}} =$ 50 GeV, $\delta_{
m in} =$ 25 keV)

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

• Distribution of the reconstructed $\delta_{\rm rec}$

(28 Si + 76 Ge, 0 – 150 keV, 2 imes 50 events, $m_{\chi, {
m in}} =$ 250 GeV, $\delta_{
m in} =$ 25 keV)

-Numerical results

Determinations of the WIMP mass and the mass splitting

Determinations of the WIMP mass and the mass splitting

- The two-parameter exponential ansatz for reconstructing the recoil spectrum could be a good approximation.
- With $\mathcal{O}(50)$ events one could in principle identify inelastic WIMPs from the elastic one model-independently.
- For inelastic $(\delta > 0)$ case, we could
 - observe positive $Q_{v_{\rm thre}}$ with a 2σ 5σ confidence level.
 - observe positive δ (although this could be slightly underestimated).
 - give an upper bound of m_{χ} (underestimated, improvement required).
- For elastic $(\delta = 0)$ case, we could observe
 - very small, but non-zero positive $Q_{v_{\rm thre}}$...
 - very small, but non-zero positive $\delta...$
 - (unphysically) negative m_{χ} : the larger the input m_{χ} , the larger the absolute value of the reconstructed m_{χ}

-Numerical results

Determinations of the WIMP mass and the mass splitting

• Distribution of the reconstructed Q_{vthre},rec

(⁷⁶Ge, 0 – 150 keV, 50 events, $m_{\chi, {
m in}} =$ 100 GeV, $\delta_{
m in} =$ 0 keV)

Summary and outlook

Summary and outlook

- With a single experiment one could identify inelastic WIMPs from the elastic one model-independently.
- By combining two experiments with different target nuclei, one could determine the mass splitting and (for small mass splitting) give a rough upper bound of the mass of inelastic WIMPs.
- Possible improvement of the determination of the (upper bound of the) WIMP mass is currently under investigation: e.g., the use of the pretty certainly determined δ .
- The reconstruction of the 1-D WIMP velocity distribution could then be achieved.

Thank you very much for your attention!