Outline

- Introduction
- DM annihilation through light mediators
 - Hierarchical limit
 - Non-hierarchical case
- A possible excess at 300 GeV in AMS-02 pbar data
 - DM annihilation: direct ann. or with mediators
 - SNR contributions
- Results
 - Fit results and model comparison
 - Constraints from dSphs
- Conclusions

DM indirect searches

Advantages

- can probe DM annihilation/decay, important to understand the origin of DM density.
- tiny signals enhanced by huge volume of the DM halo
- can probe *both* energy spectral and morphology
 - line vs. continuum,
 - peaky vs. featureless power law,
 - extended signal in space vs. point-like source.

Challenges

- always difficult to distinguish from astrophysical backgrounds ("backgrounds" not well undstood)
- Information loss during propagation
 - spectrum change du to E-dependent propagation, convection, re-acceleration, E-loss

- anisotropic source -->isotropic signals
- Large uncertainties in theoretical predictions origin/propagation of CRs, Solar modulation, hadronic interaction cross sections low energies

AMS-02 electrons: DM explanations

Constraints from gamma rays

Fermi limits from dSphs

PLANK limits

Only DM annihilating into muon-final states are consistent with the dSphs limit

4th Conference on DM, HE Jin & BWU, YEZ, 20X191,410,4171, JCAP

AMS-02 electrons: astrophysical explanations

AMS-02 antiprotons: 2016

PHYSICAL REV

AMS-02 antiproton data

PHYSICAL REV PRL 117, 091103 (2016) <mark>×10³</mark> P/P, Background -25 120 8 $\Phi \cdot \hat{R}^{2.7}$ [m⁻²·sr⁻¹·s⁻¹·GV^{1.7}· 10 -100 6 - 80 Р/Р 60 10 10 PAMELA2014 40 AMS-02 Conventional MIN 5 MED 20 MAX 10^{-6} 10⁻¹ **10³** 10² 10 10^{2} 10^{3} Energy[GeV] |Rigidity| [GV] AMS \bar{p}/p results and modeling Conventional, qq <u>p</u>∕p ratio PAMELA2014 • AMS-02 10 background DM+background DM **10**⁻⁴ <u>Б</u>Р 10^{-1} Secondary production Low energy excess ? **10**⁻⁵ 10 500 100 200 300 10^{-1} 400 Energy[GeV] DE and BAU. 4t Kireto Enfartante on DM. NTHU

H.B.Jin, Y.L.Wu, YFZ arXiv:1504.04601, PRD

Implications

- The spectral feature can be well-fitted with a power law spectrum with a cut off, typical significance 2.5—3 sigma.
- Pulsars are unlikely to produce energetic antiprotons.
- SNRs can produce secondary antiprotons but with a flat (or smooth rising) spectrum.
- DM direct annihilation (DMDM→f fbar→pbar +X) predicts a broad bump, too smooth to explain the excess in a narrow energy range.

DM annihilation through light mediators

DM cascade annihilation

 $\chi\chi \to 2\phi_n \to 2^2\phi_{n-1} \dots \to 2^n\phi_1(\phi_1 \to \psi + X)$

Lorentz boost

$$\begin{split} \frac{d\tilde{N}_{\psi}}{dx_{1}} &= \int_{-1}^{1} d\cos\theta \int_{\epsilon_{0}}^{1} dx_{0} \, \frac{d\tilde{N}_{\psi}}{dx_{0}} \, \delta\left(2x_{1} - x_{0} - \cos\theta \sqrt{x_{0}^{2} - \epsilon_{0}^{2}} \sqrt{1 - \epsilon_{1}^{2}}\right), \\ \text{Large hierarchy limit} \quad \varepsilon_{0} \ll \varepsilon_{1} \ll \varepsilon_{2} \dots \\ \frac{d\tilde{N}_{\psi}}{dx_{n}} &= \int_{x_{n}}^{1} \frac{dx_{n-1}}{x_{n-1}} \, \frac{d\tilde{N}_{\psi}}{dx_{n-1}} + \mathcal{O}(\epsilon_{i}^{2}), \end{split}$$

Hierarchical limits

Non-hierarchical case

When $\phi \approx 2m_p$

phi rest-frame

DM CM frame

Lorentz boost for finite ϵ_0

$$\frac{dN(x)}{dx} = 2 \int_{a(x)}^{b(x)} dx' \frac{1}{\sqrt{1 - \varepsilon_1^2} \sqrt{x'^2 - \varepsilon_0^2}} \frac{dN(x')}{dx'},$$

Narrow bump antiproton spectra

propagation of CRs

Cosmic-ray transportation equation

Sources of CRs

- Primary sources from SNR, pulsars
- Primary sources from WIMP
- Secondary source from CR fragmentation

Processes in Propagation

- Diffusion (random B field)
- Convection (galactic wind)
- Reacceleration (turbulence)
- Energy loss: Ionization, IC, Synchrotron, bremsstrahlung
- Fragmentation (inelastic scattering)
- Radioactive decay (unstable species)

Solar modulation

Uncertainties

- Distribution of primary sources
- Parameters in the diffusion equation
- Cross sections for nuclei fragmentation
- Distribution of B field
- Distribution of gas

Approaches

- Semi-analytical, two-zone diffusion model.
- Numerical solution using realistic astrophysical data. GALPROP/Dragon code

Antiprotons from SNRs Antiprotons can be generated from pp inelastic scatterings upstream $Q_{\bar{p}}(E) \simeq 2 \int_{-}^{E_{\max}} \mathrm{d}\mathcal{E} N_{CR}(\mathcal{E}) \sigma_{p\bar{p}}(\mathcal{E}, E) n_{gas} c \,,$ Antiprotons accelerated by the shock-wave and propagate in the same way as protons \vec{u}_2, n_2 \vec{u}_1, n_1 $\frac{J_{\bar{p},SNRs}(E)}{J_{rr}(E)} \simeq 2 n_1 c \left[\mathcal{A}(E) + \mathcal{B}(E)\right]$ xf(x,p) $\mathcal{A}(E) = \gamma \left(\frac{1}{\xi} + r^2\right) \times$ $f_0(p)$ $\times \int^{E} \mathrm{d}\omega \,\omega^{\gamma-3} \frac{D_{1}(\omega)}{u^{2}} \int^{E_{\max}} \mathrm{d}\mathcal{E} \,\mathcal{E}^{2-\gamma} \,\sigma_{p\bar{p}}(\mathcal{E},\omega)$ $\int_{0}^{f_0(p)e^{-x/d_1}}$ $\mathcal{B}(E) = \frac{\tau_{SN} r}{2 E^{2-\gamma}} \int_{\Gamma}^{E_{\max}} \mathrm{d}\mathcal{E} \,\mathcal{E}^{2-\gamma} \,\sigma_{p\bar{p}}(\mathcal{E}, E)$ $D_1(E) = \left(\frac{\lambda_c c}{3 \mathcal{F}}\right) \left(\frac{E}{e B \lambda_c}\right)^{2-\beta},$ Diffusion coefficient inside SNRs

4th Conference on DM, DE and BAU, Dec 29-31, NTHU

SNRs can in principle explain the rising of both the positrons and antiprotons, but also predicts a rise in B/C

Fit to the AMS-02 antiproton data

- Three antiproton source models considered
 - A) DM annihilation through light (5GeV) mediators
 - B) DM annihilation directly into two quarks
 - C) antiprotons generated by SNRs (Emax=10 TeV)
- Three propagation models (MIN, MED, MAX)
- DM profile: Einasto profile
- The DM mass and cross sections are set free
- Injection spectrum generated by Pythia 8 (low energy issu)
- Background normalization allowed to float freely
- chi² analysis for AMS-02 data above 20 GeV
- Solar modulation considered with potential phi=500 MV.

Results

	Model	$m_{\chi} [{ m GeV}]$	$\langle \sigma v angle (\eta)$	κ	χ^2	TS
A	MIN	765^{+167}_{-153}	$18.6^{+10.7}_{-8.0}$	$1.12{\pm}0.01$	12.5	11.6
	MED	808^{+184}_{-165}	$5.18\substack{+3.04 \\ -2.37}$	$1.13{\pm}0.01$	13.8	9.0
	MAX	826^{+185}_{-168}	$2.29^{+1.31}_{-1.06}$	$1.13{\pm}0.01$	15.5	8.5
В	MIN	20000	$1200 {\pm} 410$	$1.12{\pm}0.01$	15.5	8.6
	MED	20000	$291{\pm}123$	$1.13{\pm}0.01$	17.2	5.6
	MAX	20000	117 ± 54	$1.12{\pm}0.01$	19.3	4.7
С	MIN	_	(0.262 ± 0.103)	$1.08{\pm}0.02$	17.6	6.5
	MED	_	(0.195 ± 0.104)	$1.10{\pm}0.02$	19.2	3.5
	MAX	_	$(0.172^{+0.104}_{-0.105})$	$1.10 {\pm} 0.02$	21.4	2.7

- Model A (DM annihilation through light mediators) is favoured
- Best fit DM mass ~800 GeV, cross section compatible with thermal value

4th Conference on DM, DE and BAU, Dec 29-31, NTHU

Comparing three models

4th Conference on DM, DE and BAU, Dec 29-31, NTHU

Limits from dwarf galaxies

Fermi-LAT sets limits per energy bin, sensitive to the spectral shape

4th Conference on DM, DE and BAU, Dec 29-31, NTHU

Limits from dwarf galaxies

DM (with mediators) interpretation is consistent with the limits from dSphs

4th Conference on DM, DE and BAU, Dec 29-31, NTHU

Conclusions

- DM annihilation through light mediator can leads to different energy spectral features of CR antiprotons
- When the mass of the mediator is close to the antiproton production threshold (~2mp), a shape spectral bump appears
- The current AMS-02 antiproton data show a hint of excess: a rise in 100-260 GeV, followed by a drop of 30% in 260-450 GeV, with a significance 2.5-3 sigma.
- Such an "excess", if confirmed, will not favor SNR explanation and DM direct annihilation into SM quarks
- DM annihilation through light mediator (5 GeV or less) can provide an consistent explanation.