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L ensing of CvB vs CMB

Similar: Difference:

* Both (shall) have anisotropy and
would be lensed by foreground
gravitational potential

Thought Experiment!



L ensing of CvB vs CMB

Similar:

* Both (shall) have anisotropy and
would be lensed by foreground
gravitational potential

Image Credit: 1) Planck
2) ESA/NASA, Hubble

Difference:

Neutrinos from the early universe
will be non-relativistic today
(massive neutrinos)

Larger angles of detlection

Closer surface of last scattering
(compared to the cosmic
microwave background)

Could form multiple lensed
images [Strong gravitational
lensing]



Cosmic Neutrino Last
Scattering Surface
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FIG. 2: The probability that a neutrino with mass m last
scatters at a given comoving distance from us (the visibility
function). Massive neutrinos travel more slowly than massless
neutrinos so arrive here from much closer distances. Also
shown is the last scattering surface of the cosmic microwave
background, virtually indistinguishable from that of an m, =
10~* eV neutrino.

Dodelson & Vesterinen (PRL, 2009)



Cosmic Neutrino Last
Scattering Surface




Strong lensing of cosmic
neutrino

Lens equation

* Angle of deflection
for cosmic neutrino
(post-Newtonian)

p.| Interms of angular coord.:

n:Ds,B
£ = Dy0

| B=0—-a(f)

where

_ 4GM(R) ¢+,

X(R) =
(R) Rc? Q)2

lens

[Schneider et al. 2006]

Slides credit: Sherry Suyu



Einstein Radius: function of

neutrino velocity/ Distance to Lens
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Mass eigenstates splitting
via gravitational potential
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Spectrometer:
Stern—Gerlach experiment

What was Silver atoms

actually observed /
Furnace




Mass eigenstates splitting via gravitational
potential
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Discussion & Summary

- Strong lensing of CvB could be the largest Stern—Gerlach
experiment in our universe

- Neutrino oscillations are not relevant in this case, as the mass
eigenstates get dispersed in angular space




University of lllinois
Lin & Holder (arXiv:1910.03550)

Image credit: Aram Grigoryan/Getty Images
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The multiple components that compose our universe

Current composition (as the fractions evolve with time)

Dark matter

Dark energy

A g \ L A'
Neutrinos
69% i _
Photons .

Black holesl

Three different types of neutrinos comprise at least
0.1%, the cosmic background radiation makes up

0.01%, and black holes comprise at least 0.005%.
Dawvid Spergel (Science, 2015)
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® 84% of the matter is Dark(DM)

® DM interacts through gravity.

® Further DM interactions unobserved so far,
Such couplings must be very weak, much |
weaker than weak interactions.

e



N-BODY SIMULATION:
BECIDY | HE PROPERTY OF DARK MAT RS

Max-Planck-Institut fiir Astrophysik (2005)
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-N-Body Simulation on Cold
Dark Matter

& In varlous cusmologlcal N-body s1mulat10n

~ the A Cold Dark Matter (ACDM) model

preform Well gspemally on the large scale
structure (e g Mlllenmum Run 2005)!: "

, Max’anck Instltut fur Astrophy51k (2005)
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Controversies on Galactic Scale

-- Comparison of Numerical Simulation & Observational Data

Missing Satellite problem
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Missing Satellites Problem

CDM Simulation (Mayer and Kazantzidis)
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Strong lensing: Natural place to
probe dark matter substructures




Strong lensing
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| ensing basic

Lens equation

%’Iam |

In terms of angular coord.:

n:DSIB
& =Dy0

Observer

[Schneider et al. 2006]
Slides credit: Sherry Suyu




| ensing basic

Source Lens Image

Figure from Narayan & Bartelmann (1995)



Subhalo detection

"subhalo

los perturber - pag los perturber
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main lens

Figure 2. A simple sketch of the method we used to create our mock data;
subhaloes and line-of-sight haloes are placed so that their lensing effect lies
in the same projected position on the plane of the main lens; the grey region
gives an example of the line-of-sight volume that is taken into account.

Despali et al. (1710.05029)




Strong lensing with substructure as
perturber

source galaxy
gaaxy source galaxy source galaxy

200 00 . 200 00 ) 20 00

lensing image lensing image lensing image

200

Lensing without perturber Lensing with perturber Lensing with (large)
massive nerturber



Subhalo Hidden in ALMA
Gravitational Lens Image

Hezaveh (2016) ArXiv:1601.01388
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Hezaveh et al.. (2016)




LOOKING INTO THE FUTURE:

New Lenses

For future surveys we find that, assuming Poisson limited lens
galaxy subtraction, searches of the DES, LSST, and Euclid data sets

should discover 2400, 120000, and 170000 galaxy-galaxy strong
lenses, respectively

Collett, ApJ. 2015

Slides from Laurence Perreault Levasseur




Can Al (deep learning) help?

Early artificial intelligence
stirs excitement.

Machine learning begins

to flourish.
Deep learning breakthroughs
drive Al boom.
m
1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Image credit: Nvidia



Brief Intro to deep
learning: MNIST dataset
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Brief Intro to deep learning:
Deep Neural Networks

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
6@28x28

S2: f. maps C5: layer gq.
6@14x14 120 Yer Fe:layer OUTPUT

84 10

Credit:LeNet by Yann LeCun (1998)



Examples of handwritten digits that can be recognized
correctly the first time they are seen
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D878 L94g 7

Slides from Geoff Hinton (Coursera, 2012)




DenseNet and ResNet
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| 0ss Surface w SKip
Connection

(a) without skip connections (b) with skip connections

Li et al. NIPS 2017 (ArXiv: 1712.09913)



CONVOLUTIONAL NEURAL NETWORKS:
PREVIOUSLY USED TO FIND LENSES
(CLASSIFICATION)

THEY CAN BE TRAINED TO CLASSIFY IMAGES:
TWO CLASSES: LENSES VS. NON-LENSES

CMU DeepLens: Deep Learning For Automatic Finding Strong Gravitational Lenses in the Kilo Degree
Image-based Galaxy-Galaxy Strong Lens Finding Survey with Convolutional Neural Networks

Frangoss Lanusse,”* Quanbin Ma 2 Nan Li,™ Thomas E. Collett,® Chun-Liang Li,’ C. E. Petrillo™, C. Tortora, 5. Chatterjoe’, G. Vernardos®, L. V. E. Koopmans
Siamak Ravanbakhsh ® Rachel Mandelbaum' and Barmabds Poczos? G. Verdoes Klen', N. R. Napolitano®, G. Covone®, P. Schneider®, A. Grado®,
My W ulnamns ('m ) - - |~ o A arneges My . sewraily WWahke "4 A " \!' }'l”l.,““i:
Acptiogn Adravwmma e




LETTER

doi:10.1038/nature23463

Fast automated analysis of strong gravitational
lenses with convolutional neural networks

Yashar D. Hezaveh?*, Laurence Perreault Levasseur?* & Philip J. Marshall*?

Quantifying image distortions caused by strong gravitational
lensing—the formation of multiple images of distant sources
due to the deflection of their light by the gravity of intervening
structures—and estimating the corresponding matter distribution
of these structures (the ‘gravitational lens’) has primarily been
performed using maximum likelihood modelling of observations.
This procedure is typically time- and resource-consuming,
requiring sophisticated lensing codes, several data preparation
steps, and finding the maximum likelihood model parameters in
a computationally expensive process with downhill optimizers'.
Accurate analysis of a single gravitational lens can take up to a few
weeks and requires expert knowledge of the physical processes and
methods involved. Tens of thousands of new lenses are expected to
be discovered with the upcoming generation of ground and space
surveys>. Here we report the use of deep convolutional neural
networks to estimate lensing parameters in an extremely fast and
automated way, circumventing the difficulties that are faced by
maximum likelihood methods. We also show that the removal of lens
light can be made fast and automated using independent component
analysis* of multi-filter imaging data. Our networks can recover the
parameters of the singular isothermal ellipsoid’ density profile®,
which is commonly used to model strong lensing systems, with an
accuracy comparable to the uncertainties of sophisticated models
but about ten million times faster: 100 systems in approximately
one second on a single graphics processing unit. These networks
can provide a way for non-experts to obtain estimates of lensing
parameters for large samples of data.

deep learning, convolutional neural networks (Methods) have been
shown to excel at many image recognition and classification tasks®.
This makes them a particularly promising tool for the analysis of gravi-
tational lenses. Recently, these networks have been used to search for
gravitational lenses in large volumes of telescope data’® and to simulate
weakly lensed galaxy images'®. Here we show that these networks can
also be used for data analysis and parameter estimation.

We train four networks, Inception-v4'", AlexNet'?, OverFeat' and
a network of our own design, to analyse strongly lensed systems, by
removing their final classification layer and interpreting the outputs
of the last fully connected layer as a prediction for lensing parame-
ters, with all weights initialized at random. We train the networks to
predict the five parameters of the singular isothermal ellipsoid profile:
the Einstein radius, the complex ellipticity and the coordinates of the
centre of the lens. We use a squared-difference cost flunction, aver-
aged over the five parameters. Although in many situations in machine
learning collecting sufficiently large training sets is one of the main
challenges, here it is possible to simulate the training data extremely
fast. We train the networks on half a million simulated strong lensing
systems. The lensed background sources are composed of three equal
sets of images: the first and second comprise real galaxy images from
the Galaxy Zoo'* machine learning challenge and high-quality images
from the GREAT3 training data'”, and the third set is composed of
simulated clumpy galaxies with Sérsic and Gaussian clump profiles.
The position of the background galaxy in the source plane is chosen
randomly for each sample, but limited to regions where strong lensing
occurs, that is, inside or on the caustics.

Hezaveh et al. (Nature, 2017)



PRODUCING THE TRAINING DATA

GET A REAL IMAGE OF A GALAXY LENS IT BLUR IT WITH A PSF

APPLY RANDCM MASKS ADD COSMIC RAYS ADD NOISE




Fast automated analysis of strong
gravitational lenses with convolutional

EXAMPLES OF SIMULATED DATA

500,000 simulated data

neural networks

“label” SIE model with 5
parameters: Einstein
radius[B_E (arcsec)], x, vy, e_x,

c_y

Table 1 | Errors of the individual and combined networks

Network gz (arcsec) &, Ey x (arcsec) y(arcsec)

Inception-v4 !} 0.03 0.06 0.06
AlexNet!? 0.03 0.04 0.04 0.05 0.06
OverFeat!3 0.04 0.05 0.05 0.06 0.06
Our network 0.03 0.05 0.06 0.05 0.05

Combined network 0.02 0.04 0.04 0.04 0.04

The columns present the 689% errors for the Einstein radius (%), the x and y components of
complex ellipticity (s, and =), and the coordinates of the lensing galaxy (x and y) for each
ndividual network and the combined network. The angular parameters (6, x and y) are given in
units of arcseconds.

4 CNNSs gives pretty good results!

Hezaveh et al. (Nature, 2017)



Could we detect dark matter subhalos
in Strong lensing with Neural networks®?

e Simulated data could help us understand the
problem

e - strong gravitational lensing are insufficient (<




Deep learning setup

20000 simulated data as training set
J e 20000 simulated data [images and subhalo

ground truth]as training set

lensing image o subahlo ground truth

e 2000 “DIFFERENT” data [images] as test set

e Simulation with SIE (marco lens) contains 0-5
subhalos(perturbers)

lensing image __ | subahio ground truth e |Loss function: Binary Cross Entropy Loss (of
subhalo probability map)

e Adam Optimizer, learning rate = 1e-4

0 100

lensing image . subahlo ground truth ° NN model DenseNet (~53 |ayerS)

« Nvidia GPU: 1080Ti PY TbR CH




DenseNet

DenseNet architecture (121 layers)

Gao Huang et al., ArXiv:1608.06993

Position density map output

Dense |ayers Transition layer Dense Iayers Transition layer




|_et's check how NN Is doing
BRACEOURSELE




Prediction: subhalo
detected!




Prediction: subhalo
detected!




Prediction: multiple subhalos!

subhalo ground truth prediction

0 0
.
0 0
0 100 200 0 100 200

Macro:
pred [(0.2658, 0.0345, 0.0166, 0.1423, 0.9035, 0.0023, -0.0046, 1.0)
target [ 0.2831 -0.0776¢ 0.1189 0.0781 0.7854 0.




Prediction: multiple subhalos!

lensing image . subahlo ground truth prediction




‘Falled” good examples:
Can’t see in the dark

100 200 0 100 200 0 100 200




‘Falled” good examples:
Can’t see in the dark

subahlo ground truth

e
: 10
00




Prediction: No subhalo

lensing image subahlo ground truth prediction

0 .
0 100 200




Prediction: No subhalo

lensing image subahlo ground truth prediction

0 0
50
00
50
0 100 200




‘Rejection” of subhalo(s)
around the arc

lensing image . subahlo ground truth . prediction

50

00

50




‘Rejection” of subhalo(s)
around the arc

lensing image . subahlo ground truth . prediction

50

00

50




Summary for Sim |

e Deep learning shows some promising result in

dark matter substructures detection in lensing.

* “rejections” for no subhalos around the strong
lensing arc.




Simulation ||

® Simulation ll: More realistic, Evillens Based
® >ources

® Power law elliptical model

ubhalos - Pseudo-Jaffe Profile, Cumulative



https://github.com/wmorning/EvilLens

Simulation |l

(No Subhalo) (Has Subhalo) I Subhalo_kappa_logl0
0 0

50 50

100 : 100

150 150

200 200

100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

e Perturbations are small

 Most of the subhalos are not detectable (far
away from lensed source)



Detectable subhalos

» Subhalos near lensing arc St croot moce

Einstein radius of subhalo | f )
overlap with lensed
source (>max pixel/15)

-

0 50 100 150 200

all subhalo (ground truth) detectable subhalo (ground truth)

 We treat all the subhalos B 1: B
(with different masses) .
with the same target .
probability density ZZ




Prediction: subhalo
detected!

lensing image smooth model source galaxy

50 100 150 200 50 100 150 200 50 100 150 200

all subhalo (ground truth) detectable subhalo (ground truth) Lo subhalo (prediction)
0 . 0 .
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Prediction: subhalo detected!

lensing image smooth model source galaxy

N N

50 100 150 200 50 100 150 200 50 100 150 200

all subhalo (ground truth) detectable subhalo (ground truth) subhalo (prediction)
0 . 0 .
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ultiple subhalos detected

lensing image smooth model source galaxy
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DIScuUsSsIon

e Neural network are able to find subhalos in a
more realistic simulation




WAIT! WAIT! WAIT!
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| ots of low mass (< 1018
M sun) subhalos contributes!

Dark subhalos
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CDM vs SIDM




Power spectrum of DM
moaels

"TETHOSA

|

k) [kpe

ETHOS4

All subhalos All subhalos
10" M. . Mg, = 107 M.

107 M. 10501 107 M.

N

Tik )~ 10 Tk 10!
k [kpc '] k [kpc ']

Figure 3. Top Left: redshift dependence of the convergence power spectrum for the CDM simulation. Top Right: redshift
dependence of the convergence power spectrum for the ETHOS4 simulation. Bottom Left: mass dependence of the convergence
power spectrum for the CDM simulation. Bottom Right: mass dependence of the convergence power spectrum for the ETHOS4
simulation. Note that the y-axis is the same for a given row but differs between rows. The wavenumbers k are in comoving
coordinates. *As discussed in the text, the z = 0 power spectra are computed using the subhalo catalog at z = 0 but the
distance between the observer and the lens D, is fixed to be the same as for a lens at z = 0.5 because X i diverges as z — (.

Diaz Rivero et al. (ArXiv:1809.00004)




Statistical detection of dark
maltter power spectrum

Delta O 2D

Smooth Lens with Gaussian Random Field Difference



Nolse

O model 2D

Smooth Lens with Gaussian Random Field Difference



| Ikelihood function

L(Ogps,p) = [ d"Nd*"a P(N)P(c)

00
0O (p) + 8_aAa + N — O | Po(P) (6)

£(Ca) = (ICN||Cal [Cy|M|)~/23E M B
6_%(A0TC§1AO+poCP_1Po) (9)

6 10
P(k)[pc?]

Fic. 2. Joint-likelihood of noise and the amplitude of the
power spectrum, mapped by evaluating Equation (9) using mock
observations described in §4, lensed by a density field which
includes substructure with a flat power spectrum. The dashed lines
show the true values which were used in the mock observation. The
input amplitude of the power spectrum is successfully recovered,
with little if any degeneracy between instrumental noise and

substructure fluctuations.

|
£ 0.00250
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0.00325

0.00300

0.00275

0.00225

0.00200

0.00175

Hezaveh et al. (2016)



Preliminary result with N
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DIScuUsSsIon

« Maximum likelihood could serve as a tool to
probe power spectrum of dark matter




Thank you!

Image Credit: Hubble/STScl & NASA




Prediction: unlabeled subhalo detected!

o1 I

0 50 100 150 200 0 50 100 150 200 50 100 150 200

all subhalo (ground truth) detectable subhalo (ground truth) subhalo (prediction)

0 . 0 0.100 o
0.075
10 8 10 10
0.050
20 20 0.025 20
0.000
30 30 30
' ~0.025
40 40 —0.058°
50 —0.078,
| ~-0.100
0 20 40 0 20 40

0



Detection: Complicated Lens

lensing image smooth model source galaxy
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NO detection

lensing image smooth model source galaxy
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Fall to aetect

lensing image smooth model source galaxy
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-alse positive: Degeneracy

lensing image smooth model source galaxy
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Degeneracy

lensing image smooth model source galaxy
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rue positive

lensing image smooth model source galaxy
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