Dark Matter searches with the ATLAS detector

Jay Chan

University of Wisconsin-Madison

NCTS Dark Physics Workshop, Hsinchu January 9, 2020

ATLAS detector

NCTS Dark Physics

ATLAS detector

NCTS Dark Physics

Timelines and dataset

Jay Chan (Wisconsin)

NCTS Dark Physics

Jay Chan (Wisconsin)

Jay Chan (Wisconsin)

Dark Matter

Strong evidence of existence of DM from the astronomical observations

No direct observation of DM so far

DM searches through collider experiments provide great complementarity to the direct and indirect searches

NCTS Dark Physics

Theoretical framework

NCTS Dark Physics

Theoretical framework

Theoretical framework

Theoretical SM Mediator Complete g_{SM} g_{χ} SM Theories χ complet (e.g. Susy) Mediator simplified models ne \Rightarrow Good benchmark for DM S Ś searches **Simplified models** \Rightarrow Classified based on the mediator's spin and CP Effective field theories

generality

Model

One-mediator simplified models

Vector/axial-vector mediator

Parameters: $m_{Z'}, m_{\chi}, g_q, g_l, g_{\chi}$

Scalar/pseudo-scalar mediator

Parameters: $m_{\phi(a)}, m_{\chi}, g_f, g_{\chi}$

Less simple simplified models

The simplified models can be made "less simple", which can result in some exotic final states

X + MET analysis

Signatures	Interpretation	Publications
jet + MET	(1) (2) (3)	JHEP 01 (2018) 126
γ + MET	(1) (3)	Eur. Phys. J. C 77 (2017) 393
V + MET	(1) (3)	JHEP 10 (2018) 180
$t\bar{t}$ + MET	(4)	JHEP 06 (2018) 108
$b\overline{b}$ + MET	(4)	EPJC 78 (2018) 18

Signatures	Interpretation	Publications
Dijet	(1)	ATLAS-CONF-2019-007
Dijet + ISR*	(1)	ATLAS-CONF-2016-070
Dijet TLA**	(1)	PRL 121 (2018) 0818016
Dilepton	(1)	Phys. Rev. B 796 (2019)
Dibjet	(2)	PRD 98 (2018) 032016
<i>t</i> \bar{t} resonance	(2)	EPJC 78 (2018) 565
4 <i>t</i>	(3)	JHEP 09 (2017) 088

*ISR = initial state radiation **TLA = trigger level analysis

NCTS Dark Physics

Signatures	Interpretation	Publications
Dijet	(1)	ATLAS-CONF-2019-007
Dijet + ISR*	(1)	ATLAS-CONF-2016-070
Dijet TLA**	(1)	PRL 121 (2018) 0818016
Dilepton	(1)	Phys. Rev. B 796 (2019)
Dibjet	(2)	PRD 98 (2018) 032016
<i>tt</i> resonance	(2)	EPJC 78 (2018) 565
4 t	(3)	JHEP 09 (2017) 088

*ISR = initial state radiation **TLA = trigger level analysis

Limitation in low mediator mass due to the required triggers

Jay Chan (Wisconsin)

Signatures	Interpretation	Publications
Dijet	(1)	ATLAS-CONF-2019-007
Dijet + ISR*	(1)	ATLAS-CONF-2016-070
Dijet TLA**	(1)	PRL 121 (2018) 0818016
Dilepton	(1)	Phys. Rev. B 796 (2019)
Dibjet	(2)	PRD 98 (2018) 032016
<i>tt</i> resonance	(2)	EPJC 78 (2018) 565
4 t	(3)	JHEP 09 (2017) 088

*ISR = initial state radiation **TLA = trigger level analysis

Search for dijet + ISR jets provides sensitivity to lower mediator mass

Jay Chan (Wisconsin)

Signatures	Interpretation	Publications
Dijet	(1)	ATLAS-CONF-2019-007
Dijet + ISR*	(1)	ATLAS-CONF-2016-070
Dijet TLA**	(1)	PRL 121 (2018) 0818016
Dilepton	(1)	Phys. Rev. B 796 (2019)
Dibjet	(2)	PRD 98 (2018) 032016
<i>tī</i> resonance	(2)	EPJC 78 (2018) 565
4 <i>t</i>	(3)	
*ISR = initial state ra *TLA = trigger level (also allows sensitivity to lower)		
Jay	Chan (Wiscolisin,	

NCTS Dark Physics

More exotic final states

Signatures	Interpretation	Publications
H(bb) + MET	(1) (2) (3)	ATLAS-CONF-2018-039
$H(\gamma\gamma) + MET$	(1) (2) (3)	Phys. Rev. Lett. D 96 (2017)
Same sign <i>tt</i>	(4)	JHEP 12 (2018) 039
t + MET	(5)	JHEP 05 (2019) 41

Jay Chan (Wisconsin)

Results

• No evidence of DM has been found

• Constraints on various simplified DM models, including a set of spin-0 and spin-1 single-mediator models, and a second set of models involving an extended Higgs sector, are summarized (JHEP 1905 (2019) 142)

Results

• No evidence of DM has been found

- Constraints on various simplified DM models, including a set of spin-0 and spin-1 single-mediator models, and a second set of models involving an extended Higgs sector, are summarized (JHEP 1905 (2019) 142)
 - The following will focus on the neutral interaction spin-0 and spin-1 single-mediator models

Results – Vector mediator

Jay Chan (Wisconsin)

- Resonance searches dominate the sensitivity due to relatively high coupling to quarks
- MET+X analyses are complementary to the resonance searches in the on-shell region

Results – Axial-vector mediator

Jay Chan (Wisconsin)

 Dominated by the dilepton search with a non-vanishing coupling to leptons

Results – Vector/axial-vector mediator

• ATLAS limits can be converted to the χ -nucleon cross sections and compared with the direct/indirect searches

Results – Scalar/pseudo-scalar mediator

- Scalar/pseudo scalar limits provided by MET+ $t\bar{t}/b\bar{b}$ analyses
- Scalar mediator with mass up to 45 GeV is excluded, while pseudo-scalar mediator in the range 15-25 GeV is excluded
- Results do not depend on the DM mass as long as the DM is on-shell

NCTS Dark Physics

Summary

- Dark Matter searches with colliders are well physically motivated and provide great complementarity to the direct/indirect searches
- Focus on more complicated theories than the effective field theories in run-2
- DM searches results with the interpretations of neutral interaction single spin-0 or spin-1 mediator models are presented; no excess has been found so far
- More complementary scenarios are being investigated; look forward to the future results!

Backup slides

Estimated sensitivity with 3000 fb-1 at 14 TeV

ATL-PHYS-PUB-2018-036

In comparison to results obtained with 36 fb-1 in Run 2, the exclusion potential at the HL-LHC is found to improve by a factor of \sim 3-8.7

Jay Chan (Wisconsin)

Estimated sensitivity with 3000 fb-1 at 14 TeV

ATL-PHYS-PUB-2018-036

In comparison to results obtained with 36 fb-1 in Run 2, the exclusion potential at the HL-LHC is found to improve by a factor of \sim 3-8.7