Recent development on PDF at the LHC

Tie-Jiun Hou

Northeastern University (Shenyang)

January 9, 2020 NCTS Dark Physics Workshop, Hsinchu

Parton distribution function (PDF)

 $f_{j/A}(x,Q)$ describe the possibility to find a parton *j*, i.e. quark and gluon, in a nucleon *A*.

PDF f(x, Q) is universal

PDF(Parton distribution function) tell us the probability to find out a parton in a proton with particular momentum fraction x and energy Q.

PDF is determined by comparing data and hard cross section

HERA I+II

There are 3287 data point from HERA I+II data, after the criteria Q > 2 GeV and $W^2 > 12.5$ GeV², 1120 points are included in global analysis. It constraint PDF from $10^{-4} < x < 0.6$. The HERA I+II is one of the most firm foundation of global analysis of PDF now a day.

EPJC75 (2015) no.12, 580

CDHSW F_2^p and F_3^p

Z. Phys. C49 (1991) 187-224

CT14HERA2mD.54: CT14HERA2 without DIS data but HERA.

CT14mDeAll: CT14HERA2mD.54 + all DIS.

CT14eNoCDHSW: Including CDHSW and HERA data for DIS only.

Arguement about it. EPJC12, 243 (2000)

arXiv: 1907.12177

Di-muon

NuTeV $\nu\mu\mu$ and $\bar{\nu}\mu\mu$ SIDIS: D. A. Mason, Ph.D. thesis, Oregon U. (2006) CCFR $\nu\mu\mu$ and $\bar{\nu}\mu\mu$ SIDIS: PRD64, 112006 (2001)

CT14mDeDimu: CT14HERA2mD.54 + di-muon.

The NuTeV and CCFR di-muon data solely constraint strange PDFs for 0.01 < x < 0.4.

Inclusive Jet

Jet data have dominant constraint on gluon, especially for 0.02 < x < 0.5. Among the jet data from Tevetron and LHC Run 1, the CMS 7 TeV jet data dominate the constraint.

W charge asymmetry A_{ch}

05 09

0.5 0.9

D0 A_{ch}^{μ} : PRD77, 011106 (2008) ATL 7 WZ: PRD85, 072004 (2012) CMS 7 A_{ch}^{e} : PRL109, 111806 (2012) CMS 7 A_{ch}^{μ} : PRD90, 032004 (2014)

CT14HERA2mY.54: CT14HERA2 without DY CT14mYeAll: CT14HERA2mY.54 + all DY. CT14mYeAsy: CT14HERA2mY.54 + A_{ch} .

Asymmetry data play a dominant role among DY data.

E866 $\sigma_{pd}/(2\sigma_{pp})$

PRD64, 052002 (2001)

CT14mYeE866: CT14HERA2mY.54 + E866.

The E866 data solely dominate the constraint for \bar{d}/\bar{u} , 0.01 < x < 0.2.

Weak mixing angle $\sin^2 \theta_W$

LEP/SLD: PR427, 257 (2006) $\sin^2 \theta_W = 0.23153 \pm 0.00016$ Tevetron: PRD97 (2018) no11, 112007 $\sin^2 \theta_W = 0.23148 \pm 0.00027 (\text{Stat.}) \pm 0.00005 (\text{syst.}) \pm 0.00018 (\text{PDF.})$ CMS: EPJC78 (2018) no.9, 701 $\sin^2 \theta_W = 0.23101 \pm 0.00036 (\text{Stat.}) \pm 0.00018 (\text{syst.})$ $\pm 0.00016 (\text{theo.}) \pm 0.00031 (\text{PDF.})$

For *pp* collider LHC, the PDF uncertainty for a $q\bar{q} \rightarrow Z$ is non-negoligible.

⇒We reduce the PDF uncertainty for $\sin^2 \theta_W$ by updating PDF through A_{FB} and A_{\pm} in DY process $f\bar{f} \rightarrow Z/\gamma^* \rightarrow ll$!

Reduce PDF uncertainty for $\sin^2 \theta_W$ by A_{FB}

Samples:

 ★ Pseudo-data: CT14NNLO+ResBos, ~ LHC Run 2, (130 fb⁻¹ 500 M in full phase space)

* Theory: central and error sets CT14NNLO+ResBos $\sin^2 \theta_w$:

- * Pseudo-data: $\sin^2 \theta_w = 0.2345$
- * Theory: $\sin^2 \theta_w = 0.2315$

ATLAS acceptance:

- * lepton $p_T > 25 \text{ GeV}$
- * CC: both lepton $\eta < 2.5$ (double luminosity for $ee + \mu\mu$)
- $\, \times \,$ CF: one lepton $\eta < 2.5$ the other $2.5 < \eta < 5.0$ (only for CF)
- * Z pole: M = [80, 100] GeV
- * sideband: M = [60, 80] + [100, 130] GeV

To be published by Yao Fu, Liang Han, Minghui Liu, Tie-Tiun Hou, Chen Wang, Siqi Yang, Hang Yin, C.-P. Yuan.

Update PDF by both Z-pole and sideband region

average A _{FB} at Z pole (preliminary)					
Update using CC+CF		central	Stat. unc.	PDF unc.	
Theory prediction in CC+CF					
Before update	$\sin^2 \theta_w = 0.2315$	0.01846	0.00007	0.00117	
after update	$\sin^2\theta_w = 0.2315$	0.01770	0.00007	0.00053(54.7%)	
Theory prediction in CC					
Before update	$\sin^2 \theta_w = 0.2315$	0.00873	0.00008	0.00083	
after update	$\sin^2\theta_w = 0.2315$	0.00824	0.00008	0.00042(49.4%)	
Theory prediction in CF					
Before update	$\sin^2 \theta_w = 0.2315$	0.04197	0.00017	0.00198	
after update	$\sin^2\theta_w = 0.2315$	0.04064	0.00017	0.00092(53.5%)	

54.7% reduction on PDF uncertainty for A_{FB} for the combined CC+CF case.

Update PDF by both Z-pole and sideband region

average AFB at 2 pole (preminiary)					
Update using CC+CF		central	Stat. unc.	PDF unc.	
Theory prediction in CC+CF					
Before update	$\sin^2 \theta_w = 0.2315$	0.01846	0.00007	0.00117	
after update	$\sin^2 \theta_w = 0.2315$	0.01770	0.00007	0.00053(54.7%)	
pseudo-data	$\sin^2 \theta_w = 0.2324$	0.01709	0.00007	-	
Theory prediction in CC					
Before update	$\sin^2 \theta_w = 0.2315$	0.00873	0.00008	0.00083	
after update	$\sin^2 \theta_w = 0.2315$	0.00824	0.00008	0.00042(49.4%)	
pseudo-data	$\sin^2 \theta_w = 0.2324$	0.00793	0.00008	-	
Theory prediction in CF					
Before update	$\sin^2 \theta_w = 0.2315$	0.04197	0.00017	0.00198	
after update	$\sin^2 \theta_w = 0.2315$	0.04064	0.00017	0.00092(53.5%)	
pseudo-data	$\sin^2 \theta_w = 0.2324$	0.03920	0.00017	-	

u(x.O) at O =100.0 GeV 90%C.L. d(x.O) at O =100.0 GeV 90%C.L. prel minar If1363.54 If1363.54 PDF Ratio to If1363.54 6 01 11 11 10 If 1363.54 outPDFs/If1363.54 outPDFs/If1363.54 HQ 0.9 u 0.8 0.8 10⁻¹ 0.2 0.5 0.9 10-4 10-3 10-2 0.5 0.9 10-4 10-3 10-1 0.2 10^{-2} d(x,Q) at Q =100.0 GeV 90%C.L ū(x,O) at O =100.0 GeV 90%C.L 1.4 1.4 If1363.54 If1363.54 outPDFs/If1363.54 outPDEs/If1363.54 ²€ 0.9 Ē 0.8 ū £ 0.7 0.6 0.6 0.5 10-4 10 10-1 0.2 10-4 10-3 10.4 10⁻¹ 0.2 0.5 -10^{-2}

at 7 polo (proliminary)

ovorogo A

Central PDF receive large impact from the pseudo A_{FB} data, and bias the predicted $\sin^2 \theta_w$.

Z-Pole mass region is sensitive to the $\sin^2 \theta_w$, the inclusion of Z-Pole mass region for PDF update bias the $\sin^2 \theta_w$ prediction. $\implies \sin^2 \theta_w$ should be determined by measurement but not PDF!

Update PDF by sideband CF region

Update PDF by sideband CC region

average AFB at Z pole (prelin	ninary)				
Update using CC		central	Stat. unc.	PDF unc.	
Theory prediction in CC+CF					
Before update	$\sin^2 \theta_w = 0.2315$	0.01846	0.00007	0.00117	Less reduction on PDF
after update	$\sin^2 \theta_w = 0.2315$	0.01839	0.00007	0.00087(25.6%)	$1 + \frac{2}{2} + \frac{1}{2} + \frac{1}{2}$
pseudo-data	$\sin^2 \theta_w = 0.2345$	0.01490	0.00007	-	unc, but $\sin^2 \theta_w$ bias is
Theory prediction in CC					smaller then statistical
Before update	$\sin^2 \theta_w = 0.2315$	0.00873	0.00008	0.00083	smaller mail statistical
after update	$\sin^2 \theta_w = 0.2315$	0.00869	0.00008	0.00067(19.3%)	error for $\sin^2 \theta = 0.2345$
pseudo-data	$\sin^2 \theta_w = 0.2345$	0.00695	0.00008	-	0.2545
Theory prediction in CF					pseudo-data
Before update	$\sin^2 \theta_w = 0.2315$	0.04197	0.00017	0.00198	pseudo dulu.
after update	$\sin^2 \theta_w = 0.2315$	0.04182	0.00017	0.00144(27.3%)	
pseudo-data	$\sin^2 \theta_w = 0.2345$	0.03411	0.00017	-	
		12 Error thunds of (i), () 10 11 11 11 11 11 11 11 11 11	U(S,Q) at Q = 100. IT3 AFPg 10 ⁻⁴ 10 ⁻² x U(X,Q) at Q = 100. IT3 AFPg 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.62 90%CL 35.34 54.35 pre immin 9.1 9.1	$\frac{d(x,Q) = 0 = 1000 \text{ GeV 90%CL}}{H198.54}$ $\frac{d(x,Q) = 0 = 1000 \text{ GeV 90%CL}}{AFB_{1,5}^{10} \text{ s}^{2} - 10^{10} \text{ c}^{2} - 0.5 \text{ c}^{2} \text{ s}^{2}}$ $\frac{d}{10^{14} \text{ 10}^{3} - 10^{2} - x - 10^{10} \text{ c}^{2} \text{ s}^{2} \text{ s}^{2} \text{ s}^{2}}$ $\frac{d(x,Q) = 0 + 1000 \text{ c}^{2} \text{ s}^{2} \text{ s}^{2}$
	Invariant Mass	0.5	10 ⁻⁴ 10 ⁻³ 10 ⁻²	10 ⁻¹ 0.2 0.5 0.9	10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 0.2 0.5 0.9) Q (

Reduce PDF uncertainty for $\sin^2 \theta_W$ by A_{\pm}

Samples:

- ★ Pseudo-data: CT14NNLO+ResBos, ~ LHC Run 2, (130 fb⁻¹ 5000 M in full phase space)
- * Theory: central and error sets CT14NNLO+ResBos

ATLAS acceptance:

- * lepton $p_T > 25$ GeV (including neutrinos)
- * charge lepton $|\eta| < 2.5$
- * Both electron and muon channel.

Bin size:

* 0.1 bin size used.

Reduce PDF uncertainty for $\sin^2 \theta_W$ by A_{\pm}

average AFB at Z pole (preliminary)					
Update using CC	central	Stat. unc.	PDF unc.		
Theory prediction in CC+CF					
Before update	0.01846	0.00007	0.00117		
after update	0.01846	0.00007	0.00081(30.8%)		
Theory prediction in CC					
Before update	0.00873	0.00008	0.00083		
after update	0.00873	0.00008	0.00061(26.5%)		
Theory prediction in CF					
Before update	0.04196	0.00017	0.00198		
after update	0.04197	0.00017	0.00139(29.8%)		

- * Less sensitive to energy spectrum
- * Larger cross section
- Negligible correlation to weak mixing angle
- * PDF unc. reduced by 30% for A_{\pm} .

Reduce PDF uncertainty for $\sin^2 \theta_W$ by A_{FB} and A_{\pm} combined

Update PDF by AFB and A	\pm combined (preliminary)
Theory prediction in CC	PDF unc.
Before update	0.00156
After update	0.00077(50.6%)
Theory prediction in CF	
Before update	0.00079
After update	0.00035(55.7%)

Overall PDF unc. reduced by 56% by both A_{FB} and A_+ .

Update PDF by A _{FB} (preliminary)					
bin size unc. Update by CC event		Update by CF event	Update by CC+CF event		
Before update	0.00079	0.00079	0.00079		
After update(1 GeV)	0.00057(27.8%)	0.00056(29.1%)	0.00048(50.6%)		
After update(2 GeV)	0.00060(24.0%)	0.00060(24.0%)	-		
After update(5 GeV)	0.00065(17.7%)	0.00062(21.5%)	-		
Update PDF by A_+ (pr	eliminary)				
After update(0.1)	0.00055(30.4%)				
After update(0.2)	0.00063(20.2%)				

* Larger bin size: lower sensitivity

* Smaller bin size: larger systematic uncertainties

Study of physical parameter through global analysis: $\alpha_s(M_z)$

- The global fitting of $\alpha_s(M_z)$ value need to change all the $\alpha_s(M_z)$ value at the same time.
- The fixed target F_2 data and HERA DIS data prefer smaller α_s value.
- The ATLAS 8TeV Z p_T , ATLAS 7 TeV incl. jet data, bring the central value of $\alpha_s(M_z)$ from $0.115^{+0.006}_{-0.004}$ (CT14) to 0.1164 ± 0.0026 (CT18).

PDF uncertainty in Higgs production

Yellow Report 4 (2016)

Correlation between Higgs production and gluon PDF through gluon fusion

De-correlation for incl. jet

JHEP 1502 (2015) 153, Erratum: JHEP 1509 (2015) 141

- The corr. error "jes16" and "jes62" of ATLAS 7 TeV incl. jet data are de-correlated according to Table 6 of 1706.03192. Its χ^2 /Npts reduces from 2.34 to 1.68 for CT14HERA2NNLO.
- Precise systematic error analysis help on the reduction of global analysis of PDFs.

gluon PDF of CT18

Lagrange Multiplier Scans for gluon at *x* around 0.01:

- ATLAS 8 TeV Z p_T data prefer a slightly larger gluon PDF.
- ATLAS 7 TeV and CMS 8TeV incl. jet data prefer a slightly smaller gluon PDF.
- HERA I+II data prefer a slightly smaller gluon PDF.
- Including all the contribution in global analysis, the reduction of PDF uncertainty for $gg \rightarrow h$ production reduced by 5% comparing to CT14.

Impact of top-quark pair production on CT14HERA2

- No significant impact on the uncertainty of PDFs.
- Minor impact on gluon in large x region.

PoS DIS2019 (2019) 017

Impact from ATLAS 8TeV norm. y_{tt} $t\bar{t}$ data on CT14HERA2

Impact from CMS 8TeV norm. $y_{tt} t\bar{t}$ data on CT14HERA2mjet

- CT14HERA2mjet: CT14HERA2 without all the jet data included.
- Without the jet data included in global analysis, *tī* data have rather obvious impact on both central predictions and error bands of PDFs.

Distribution	Detector	Npts	χ^2/N
inclusive jet	CDF	72	1.50
inclusive jet	D0	110	1.03
inclusive jet	ATLAS	90	0.57
inclusive jet	CMS	133	0.93
$\frac{1}{\sigma} \frac{d\sigma}{dp_T^t}$	ATLAS, CMS	8,8	0.39, 3.88
$\frac{1}{\sigma} \frac{d\sigma}{dy_t}$	ATLAS, CMS	5,10	2.70, 2.53
$\frac{1}{\sigma} \frac{d\sigma}{dm_{t\bar{t}}}$	ATLAS, CMS	7,7	0.25, 8.67
$\frac{1}{\sigma} \frac{d\sigma'}{dy_{t\bar{t}}}$	ATLAS, CMS	5,10	2.46, 3.67

The Npts of $t\bar{t}$ data is smaller by a factor of 10 than jet data.

With the assumption of a higher weight for $t\bar{t}$ data. By weighting the $t\bar{t}$ data by the ratio of Npts of CMS 7 jet(133) to Npts of $t\bar{t}$ data, Impact from weighted $t\bar{t}$ data on gluon PDF is as strong as jet data.

ATLAS 7 TeV WZ production

The statistical error of measurment is about 1%, while the uncertainty from PDF is about $5\% \sim 7\%$.

- * In the era of LHC, PDF uncertainty used to be one of the dominant uncertainty in a measurement.
- * To reduce the uncertainty from PDF need precise SM measurements.
- * We need to know the SM observable which can really help on reducing the uncertainty of PDF about the region sensitive to the target measurement, and then analysis the SM observable ahead.
- * The communication between experimentalist and global fitter and the real global analysis take times

PDFsense

PDFsense predicts that the CMS data will have the largest impact

PRD98 (2018) no.9, 094030

http://metapdf.hepforge.org/PDFSense/

ePump

+++ N(EV pairs)	DRS15 electron charge	asymmetry from W decays from D0 Run-2 9.7 fb^-1 (1412,2862)	
27	* Fasy for electron Et>2	5 GeV and neutrino Et>25 GeV: sort(5)=1960 GeV, uncorrelated	
+++ ObservableFile	MG15 NLO & NNLO ratios	K(W-)/K(W+) for CT14 NNLO, normalized to CT-package LO: + th	
CT14HERA2ex/tabs/E160.If136	3 : NormErr # of corr	err Frm M W METmin	
CT14HERA2ex/tabs/E101.If136	4 9.9 6 1969 8	3850 2540	
CT14HERA2ex/tabs/E102.If136	# of corr err D	ata Columo StatErr Columo HocSys Columo corr err Col	
CT14HERA2ex/tabs/E104.If136	a said-side	A E 7 0	
CT14HERA2ex/tabs/E108.If136	whid oTeMIN OTEMAX	Facy StatErr TotSys lineSys Job e81% e84% e85% e86	
CT14HERA2ex/tabs/E109.If136	1 1 25 0 0 00E+02 0		
CT14HERA2ex/tabs/E110.If136	0 3 25 0 0 00E+02 0		
CT14HERA2ex/tabs/E111.If136	A E 25.0 0.00E.02 0	. 16 - 6	
CT14HERA2ex/tabs/E124.If136	0.5 25.0 5.00L+02 0	* DATA SET 281 ; NORM Fac = 1.000000 ; # of pts = 13 ;	
CT14HERA2ex/tabs/E125.If136	0.7 25.0 5.00L+02 0	* R^2, r(k) = 4.934 0.110 0.081 0.069 -2.206 0.	
CT14HERA2ex/tabs/E126.If136	1 1 25 0 0 005-02 0	Y O Rs Exp Th./Norm	
CT14HERA2ex/tabs/E127.If136	1 30 25 8 0 985-02 8	Theory Column	a
CT14HERA2ex/tabs/E147.If136	1 7 25 8 9 885-82 8	5	
CT14HERA2ex/tabs/E145.If136	1.0 25.0 0.005.02 0	Data : If1363.00.dta	
CT14HERA2ex/tabs/E169.If136	2 1 25 0 0 000-02 0	1.000E-01 8.039E+01 1.960E+03 2.10000E-02 1.93596E-12	Updated pest-fit
CT14HERA2ex/tabs/E201.If136	2.1 25.0 9.000.002	a 3.000E-01 8.039E+01 1.960E+03 5.23000E-02 5.53549E-	opuacea best ne
CT14HERA2ex/tabs/E203.If136	2.5 25.0 5.000002 -		
CT14HERA2ex/tabs/E204.If136	2.04 25.0 5.000402		and
CT14HERA2ex/tabs/E225.If136	2.92 25.0 9.000402 -	/hin/lindakoDDEc_CT14HERAZov/Eu11CT14HERAZ	allu
CT14HERA2ex/tabs/E227.If136	3	./ DEN/ OPDICEFURS CI14HERAZEX/ FULLCI14HERAZ	
CT14HERA2ex/tabs/E234.If136	3		Llogian Free DDFa
CT14HERA2ex/tabs/E260.If136	3	1.700E+00 8.039E+01 1.960E+03 1.10000E-01 1.26935E-	Hessian Error PDES
CT14HERA2ex/tabs/E261.If136	3	1,900E+00 8,039E+01 1,960E+03 6,66000E-02 7,59711E-	
CT14HERA2ex/tabs/E267.If136	3	2,100E+00 8,039E+01 1,960E+03 -1,55000E-02 2,17415E-03	
CT14HERA2ex/tabs/E268.If136	" data"	2.308E+00 8.039E+01 1.960E+03 -9.97000E-02 -9.28367E-02	
CT14HERA2ex/tabs/E240.If136	.uata	2.540E+00 8.039E+01 1.960E+03 -1.91000E-01 -2.23884E-01	
CT14HERA2ex/tabs/E241.If136	3	2,920E+00 8,039E+01 1,960E+03 -3,99700E-01 -4,31176E-01	
CT14HERA2ex/tabs/E281.If136	3	Data : If1363.01.dta	
CT14HERA2ex/tabs/E266.If136	3	1,000E-01 8,039E+01 1,960E+03 2,10000E-02 1,96980E-02	
CT14HERA2ex/tabs/E504.If136	3	3.000F-01 8.039F+01 1.960F+03 5.23000F-02 5.63528F-02	The second second second second second second
CT14HERA2ex/tabs/E514.If136	3	5,000E-01 8,039E+01 1,960E+03 9,16000E-02 9,28178E-02	A tow coconde
CT14HERA2ex/tabs/E535.If136	3	7.000F-01 8.039F+01 1.960F+03 1.19700F-01 1.24136F-01	A IEW SECULIUS
CT14HERAZex/tabs/E538.If136	3	9,000E-01 8,039E+01 1,960E+03 1,45200E-01 1,49556E-01	
+++ PDFin PDI	Fout	1,100E+00 8,039E+01 1,960E+03 1,55900E-01 1,65373E-01	lator
PDFs/CT14HERA2ex/If1363 C	T14HERA2ex/PDFtmp/If1363	1.398F+88 8.839F+81 1.968F+83 1.53788F-81 1.65749F-81	Idlel
		1.700F+00 8.039F+01 1.960F+03 1.10000F-01 1.29627F-01	
		1,900E+00 8,039E+01 1,960E+03 6,66000E-02 7,82553E-02	
		2.100F+00 8.039F+01 1.960F+03 -1.55000F-02 3.88933F-03	

".in" file

".theory" file

PRD98(2018) no.9, 094005,1907.12177 http://hep

http://hep.pa.msu.edu/epump/

- * Base on Hessian reweighting method, similar to ePump.
- * The prediction of PDFs at HL-LHC concerned no systematic error. Well-control systematic error is important to reach this goal.
- * Physical parameters, such like α_s and $\sin^2 \theta_w$, and PDF parametrization are fixed in reweighting method. Therefore, the PDF updated through reweighting method by the measurements which probing the phase space of PDF (in flavor and x) that has not been well constrained will not be reliable.

CT18 parton distribution functions

This page provides numerical table files for the computation of CT18 next-to-leading order (NLO) and next-to-next-toleading order (NNLO) parton distribution functions. They can be interpolated with the help of a standalone Fortran interface and demonstration program , as well as the tables with interpolated values of the QCD coupling alpha_s and PDFs. A simple C++ interface for the CTEQ-TEA PDFs with CTEQ6.6 or later can be found here.

ATTENTION: The format of the PDF table files (with the extension .pds) and the Fortran interface were revised in 2012 to provide interpolation of the energy dependence of the QCD running coupling alpha_s using a table of alpha_s values stored inside the .pds file. The pre-2012 PDF table files are partly incompatible with the new format. They can be interpolated by the 2012 interface, but without computing alpha_s.

Available PDF sets

See the header of the Fortran interface for further explanations.

PDF	set	Description and links to the table files	Auth
CT18	NNLO	*General-purpose NNLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
		*POF sets with a varied strong coupling alpha_s(M_Z) in the ranges 0.116-0.120 and 0.110-0.124 . The recommended 90% C.L. uncertainty estimate is 0.116 - 0.120.	
CT18	NLO	*General-purpose NLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
		*POF sets with a varied strong coupling alpha_s(M_Z) in the ranges 0.116-0.120 and 0.110-0.124 . The recommended 90% C.L. uncertainty estimate is 0.116 - 0.120.	
CT182	Z	*General-purpose NNLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
NNLO		*POF sets with a varied strong coupling alpha_s(M_Z) in the ranges 0.116-0.120 and 0.110-0.124 . The recommended 90% C.L. uncertainty estimate is 0.116 - 0.120.	
CT187	Z NLO	*General-purpose NLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
		*POF sets with a varied strong coupling alpha_s(M_Z) in the ranges 0.116-0.120 and 0.110-0.124 . The recommended 90% C.L. uncertainty estimate is 0.116 - 0.120.	
CT18/	A	*General-purpose NNLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
NNLO		*POF sets with a varied strong coupling alpha_s(M_Z) in the ranges 0.116-0.120 and 0.110-0.124 . The recommended 90% C.L. uncertainty estimate is 0.116 - 0.120.	
CT18/	A NLO	*General-purpose NLO central set + 58 eigenvector sets (LHAPDF)	TJ. Ho
		TODE cate with a waried strong complian alpha c/H 7) in the range 0 115-0 170 and 0 110-0 174. The recommended 00t C L uncertainty	34/35

Summary

- * In the LHC era, the PDF uncertainty become a dominant contribution to a measurement. It is getting more crucial for precision measurement and also new physics search.
- * Precise SM measurements are key to reduce PDF uncertainty.
- * PDFsense and reweighting base methods, such like ePump and xfitter profiling, are the efficient ways to help experimentalist to find out the SM observable which can help on reducing PDF uncertainty for target measurement, and analysis the SM observable first.
- * Updated PDF obtained by the reweighting method share the fixed physical parameters and PDF parametrization, and thus is not equivalent to the PDF done by real global analysis. Extend data analysis need PDFs from real global analysis.