Seeding Supermassive Black Holes

NCTS Dark Physics Workshop 01/09/2020

Wei-Xiang Feng University of California, Riverside

W.-X. Feng, H.-B. Yu & Y.-M. Zhong (in prep.)

Puzzle: SMBHs in Re-ionization Era

- Most galaxies are found with supermassive black holes (SMBHs) with mass $\gtrsim 10^8 M_\odot$ at their centers.
- The early formation of SMBHs in re-ionization era (6 < z < 20) has puzzled astrophysicists for decades.
- More recently, around a hundred of distant SMBHs are found in ~800 Myr after the creation of our universe (redshift z ~ 7).
 Banados et al., Nature, 553, 473 (2018); Wang et al., ApJ, 869, L9 (2018);

Matsuoka et al., ApJ, **883**, 183 (2019); **872**, L2 (2019)

First Stars and Reionization Era

Self-interacting Dark Matter (SIDM)

- Understanding DM is crucial to unravel the connection of the galaxies to their central holes.
- Rather than cold dark matter (CDM), we consider selfinteracting dark matter (SIDM) to model the dark halos.
- Core-cusp, diversity problem...

Kaplinghat et al., PRL, **113**, 021302 (2014); Kamada et al., PRL, **119**, 111102 (2017)

Can SIDM halo revolve the puzzle via Direct Collapse scenario ??

Constraint on DM self-interaction: 10^{-1} cm²/g $\leq \sigma/m \leq 10$ cm²/g

• Long mean free path (LMFP) regime ($\lambda \gg H$).—

 $H = \left(\frac{\nu^2}{4\pi G\rho}\right)^{1/2}$ (gravitational scale height) is the proper length scale of heat transfer.

The DM particles make several orbits between collisions; the heat conduction is more efficient.

• Short mean free path (SMFP) regime ($\lambda \ll H$).—

 $\lambda = \frac{1}{\sqrt{2}n\sigma}$ (mean free path) is the proper length scale of heat transfer.

The DM motion is significantly restrained by multiple collisions; the heat conduction is less efficient.

Balberg & Shapiro, PRL, **88**, 101301 (2002); Balberg, Shapiro & Inagaki, ApJ, **568**, 475 (2002)

$$\frac{\partial M}{\partial r} = 4\pi r^2 (\rho_b + \rho_\chi), \quad \frac{\partial (\rho_\chi \nu_\chi^2)}{\partial r} = -\frac{GM\rho_\chi}{r^2}, \quad \frac{\partial (\rho_b \nu_b^2)}{\partial r} = -\frac{GM\rho_b}{r^2}, \quad \frac{L_\chi}{4\pi r^2} = -\frac{3}{2}\alpha\beta\nu_\chi\sigma_\chi \left(\alpha\sigma_\chi^2 + \frac{\beta}{\gamma}\frac{4\pi G}{\rho_\chi\nu_\chi^2}\right)^{-1}\frac{\partial\nu_\chi^2}{\partial r}, \quad \frac{L_b}{\partial r} = -\frac{3}{2}\frac{\beta\nu_b}{\sigma_b}\frac{\partial\nu_b^2}{\partial r}, \quad \frac{\partial L_\chi}{\partial r} = -4\pi\rho_\chi r^2\nu_\chi^2 \left(\frac{\partial}{\partial t}\right)_M \ln\frac{\nu_\chi^3}{\rho_\chi}, \quad \frac{\partial L_b}{\partial r} = -4\pi\rho_b r^2\nu_b^2 \left(\frac{\partial}{\partial t}\right)_M \ln\frac{\nu_b^3}{\rho_b},$$

- NFW profile for SIDM as initial condition.
- Hernquist profile for baryons:

$$\Phi_b(r) = -\frac{GM_H}{r+r_H}, \quad M_b(r) = \frac{M_H r^2}{(r+r_H)^2}, \qquad \rho_b(r) = \frac{1}{4\pi G} \nabla^2 \Phi_b(r) = \frac{M_H r_H}{2\pi r (r+r_H)^3},$$
$$\begin{bmatrix} M_0 = 4\pi \rho_s r_s^3 & (\sigma/m)_0 = (r_s \rho_s)^{-1} \\ \nu_0 = (4\pi G \rho_s)^{1/2} r_s \ L_0 = (4\pi G)^{5/2} G^{3/2} \rho_s^{5/2} r_s^5 \\ t_0 = (4\pi G \rho_s)^{-1/2} \quad C_0 = (4\pi G)^{3/2} \rho_s^{5/2} r_s^2 \end{bmatrix}$$

TABLE I. Fiducial quantities, x_0 , and dimensionless variables, \hat{x} for gravothermal evolution

FIG. 1. Evolution of the inner density profiles. Upper left: low-redshift halo, $\sigma/m = 0.82 \text{ cm}^2/\text{g}$ ($\hat{\sigma} = 0.01$). Upper right: low-redshift halo, $\sigma/m = 8.2 \text{ cm}^2/\text{g}$. The collapse time is reduced by a factor of 5.2. Bottom: high-redshift halo, $\sigma/m = 0.36 \text{ cm}^2/\text{g}$ ($\hat{\sigma} = 0.19$). The collapse time is reduced by a factor of 20.2. Note that the difference in the initial stage of the evolution is due to the fact we start the simulations with $\hat{r}_{\text{inner most}} = 10^{-4} (10^{-2})$ for SIDM with baryons (pure SIDM).

• Summary of high redshift halo formed at z = 10 (473Myr):

 $\rho_c(z=10) \approx 5.71 \times 10^4 M_{\odot}/{\rm kpc}^3$ and $c_{200}=3.9$

$$\rightarrow \rho_s = 2.84 \times 10^8 M_\odot / {\rm kpc^3}, \, r_s = 8.9 \ {\rm kpc}$$

 $\rho_s = \frac{200}{3} \frac{c_{200}^3}{K_{c_{200}}} \rho_c, \quad r_s = \left(\frac{3M_{200}}{800\pi c_{200}^3 \rho_c}\right)^{1/3}$

Navarro, Frenk & White, ApJ, 462, 563 (1996)

and we pick $M_H = 8 \times 10^{10} M_{\odot}$, $r_H = 0.34$ kpc

we find for $\hat{\sigma} = 0.19$ ($\sigma/m = 0.36$ cm²/g), the collapse time:

- 8.3 Gyr for pure SIDM halo; 413 Myr for SIDM with baryons
- A factor of **20** reduction !!

Around 0.05 of the collapse time for pure SIDM case !!

Inner/Secondary core emergence

 $\frac{\mathcal{M}}{M_{200}} = \frac{\mathcal{M}}{M_{2nd}} \frac{M_{2nd}}{M_0} \frac{M_0}{M_{200}} = \frac{\mathcal{M}}{M_{2nd}} \zeta \frac{1}{K_{c_{200}}}$

The mass of the inner core follows

Direct Collapse of the inner core ??

FIG. 3. $M_{\rm 2nd}/M_0$ as a function of $(\sigma/m)r_s\rho_s$

Pollack, Spergel & Steinhardt , ApJ, 804, 131 (2015)

Dynamical Instabilities

- The dynamical instability in Newtonian gravity requires the (pressure-averaged) adiabatic index of the core $\langle \Gamma \rangle \leq \Gamma_{\text{Cr.}} = 4/3$, whereas $4/3 \leq \Gamma \leq 5/3$ for ideal gas.
- In GR, the pressure (thermal energy) plays a role in gravitational energy such that

$\Gamma_{\text{Cr.}} = 4/3 + (\text{pressure contribution})$

Chandrasekhar, PRL, 12, 114; ApJ, 140, 417 (1964)

Dynamical Instabilities

Truncated Maxwell-Boltzmann model

(Merafina & Ruffini, A&A, 221, 4 (1989))

- The critical compactness $\sim 10^{-2}$
- The critical central velocity dispersion $v_d(0) \simeq 0.55 \sim 0.57c$

FIG. 4. Adiabatic indices as functions of $v_d(0)$ (truncated MB model) at b = 0.1

TABLE III. Marginal stable points corresponding to different temperature parameters $b = k_B T_R/mc^2$. We find it hard to achieve the GR dynamical instability for $b \leq 10^{-2}$. For $b \geq 1.0$ pair production effects of SIDM need to be taken into account and the results should be modified.

b	W_0	$\bar{\mathcal{M}}$	Ŕ	$\mathcal{C} = G\mathcal{M}/c^2R$	$\epsilon_c(0)/mc^2$	$\bar{ ho}(0)$	$\bar{p}(0)$	$v_d(0)/c$	$\langle \Gamma \rangle = \Gamma_{\rm cr.}$
5.0	6.46760×10^{-2}	2.06291×10^{-1}	2.59300×10^{0}	7.95569×10^{-2}	4.77940×10^{-1}	1.59029×10^{-1}	1.69197×10^{-2}	5.64962×10^{-1}	1.62360
3.0	1.07885×10^{-1}	1.58848×10^{-1}	2.00200×10^{0}	7.93447×10^{-2}	4.78539×10^{-1}	2.68968×10^{-1}	2.85863×10^{-2}	5.64662×10^{-1}	1.62359
1.0	3.25432×10^{-1}	8.89055×10^{-2}	1.13900×10^{0}	7.80557×10^{-2}	4.82454×10^{-1}	8.73831×10^{-1}	9.24768×10^{-2}	5.63460×10^{-1}	1.62352
0.5	6.57400×10^{-1}	5.98030×10^{-2}	7.88001×10^{-1}	7.58920×10^{-2}	4.89672×10^{-1}	1.99392×10^{0}	2.09844×10^{-1}	5.61895×10^{-1}	1.62234
0.3	1.11294×10^{0}	4.30745×10^{-2}	5.94001×10^{-1}	7.25159×10^{-2}	5.01296×10^{-1}	4.04500×10^{0}	4.22622×10^{-1}	5.59857×10^{-1}	1.62321
0.1	3.82510×10^{0}	1.47252×10^{-2}	3.36001×10^{-1}	4.38247×10^{-2}	6.19961×10^{-1}	5.81339×10^{1}	5.87858×10^{0}	5.50785×10^{-1}	1.62163

Angular Momentum of the Dark Halos

- Universal angular momentum profile of dark halo?
 Bullock et al., ApJ, 555, 240 (2001)
- To reach the direct collapse into a BH without fragmentation, the angular momentum of the inner core must satisfy $\mathcal{J} < (G/c)\mathcal{M}^2$
- For halo mass $M_{200} = 10^{12} M_{\odot}$ with concentration $c_{200} = 4$; the core radius starts to form around $0.1r_s$, by using NFW profile and the fitting function from N-body Liao, Chen & Chu, ApJ, 844, 86 (2017)
- $\mathcal{M} = 5.44 \times 10^9 M_{\odot}$ $\mathcal{J} = 7.29 \times 10^7 M_{\odot} \cdot \text{Mpc} \cdot \text{km/s} \simeq 10^2 (G/c) \mathcal{M}^2 \gg$ $(G/c) \mathcal{M}^2 = 4.24 \times 10^5 M_{\odot} \cdot \text{Mpc} \cdot \text{km/s}.$

Angular Momentum of the Dark Halos

• The dissipation of angular momentum due to viscosity (LMFP) $\mathcal{J} = \mathcal{J}_i \exp\left(-\frac{20}{3\sqrt{3\pi}} \int_{t_i}^t \frac{\rho_R(t')(\sigma/m)b^{3/2}(t')}{G\mathcal{M}/c^2R(t')}cdt'\right)$

To estimate for pure SIDM case, we take $\rho_R \simeq \rho_s \simeq 10^8 M_{\odot}/\text{kpc}^3$, $R \simeq 0.1 r_s \simeq 1 \text{kpc}$, $\mathcal{M} \simeq 10^{-2} M_0 \simeq 10^{10} M_{\odot}$, $\hat{\sigma} = 10^{-2}$, $cb = \nu = 0.3\nu_0$. The time Δt for $\mathcal{J} \simeq 10^{-4} \mathcal{J}_i$ is 964.8 t_0 (for $\mathcal{J} = e^{-1} \mathcal{J}_i$ takes 120.6 t_0), which is much less than the collapse time $t_c = 150/(0.6 \times 0.01) = 2.5 \times 10^4 t_0$, as the viscosity and conductivity share the same microscopic nature of "collisional" SIDM.

Around 0.04 of the collapse time for pure SIDM case !!

$$t_c \approx \frac{150}{\gamma} \frac{t_0}{\hat{\sigma}} \quad \text{for} \quad \hat{\sigma} = r_s \rho_s \sigma / m \ll 1$$

Essig, Mcdermott, Yu & Zhong, PRL, 123, 121102 (2019)

• For pure SIDM, the inner core mass follows

$$\zeta \equiv \frac{M_{2\rm nd}}{M_0} = 0.075((\sigma/m)r_s\rho_s)^{2/3}$$

- Qualitatively, for SIDM halo with baryons: larger M_H ; smaller r_H will lead to a faster collapse.
- The sufficient condition for the inner core to collapse into a BH: $v_d(0) \simeq 0.55 \sim 0.57c$.
- The angular momentum of SIDM halo can be transported out within the collapse time, and a Direct Collapse of a BH ~ $10^9 10^{10} M_{\odot}$ before redshift z = 7 is possible !!

Thanks for your attention !