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Puzzle: SMBHs in  
Re-ionization Era 

• Most galaxies are found with supermassive black holes 
(SMBHs) with mass  at their centers.


• The early formation of SMBHs in re-ionization era 
( ) has puzzled astrophysicists for decades.


• More recently, around a hundred of distant SMBHs are 
found in 800 Myr after the creation of our universe 
(redshift ).

≳ 108M⊙

6 < z < 20

∼
z ∼ 7 Banados et al., Nature, 553, 473 (2018); 

Wang et al., ApJ, 869, L9 (2018);
Matsuoka et al., ApJ, 883, 183 (2019); 872, L2 (2019)





Self-interacting Dark Matter 
(SIDM) 

• Understanding DM is crucial to unravel the connection of 
the galaxies to their central holes.


• Rather than cold dark matter (CDM), we consider self-
interacting dark matter (SIDM) to model the dark halos.


• Core-cusp, diversity problem…


• Can SIDM halo revolve the puzzle via Direct Collapse 
scenario ??

Kaplinghat et al., PRL, 113, 021302 (2014); 
Kamada et al., PRL, 119, 111102 (2017)

10−1cm2/g ≤ σ/m ≤ 10cm2/gConstraint on DM self-interaction:



• Long mean free path (LMFP) regime ( ).— 


 (gravitational scale height) is the proper length scale of heat transfer. 


The DM particles make several orbits between collisions; the heat conduction is more 
efficient.


• Short mean free path (SMFP) regime ( ).— 


 (mean free path) is the proper length scale of heat transfer. 


The DM motion is significantly restrained by multiple collisions; the heat conduction is 
less efficient.

λ ≫ H

H = ( ν2

4πGρ )
1/2

λ ≪ H

λ =
1

2nσ

Balberg & Shapiro, PRL, 88, 101301 (2002); 
Balberg, Shapiro & Inagaki, ApJ, 568, 475 (2002)

Gravothermal Evolution of 
SIDM Dark Halos



Gravothermal Evolution of 
SIDM Dark Halos

• NFW profile for SIDM as initial condition.


• Hernquist profile for baryons:
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where M(r, t) is the total mass enclosed within r at
time t, ⇢X(r, t) is the local density, ⌫X(r, t) is the one-
dimensional velocity dispersion, LX(r, t) is the luminos-
ity, �X is the self-interaction strength of species X = �

(DM) or b (baryons), G is the Newton’s constant, and
(@t)M denotes the Lagrangian time derivative. The pa-
rameters ↵ = 2.257, � = 1.385 are given by kinetic the-
ory, and � = 0.753 is by matching fluid model to the
results of N-body simulation [35]. For baryons we only
keep the SMFP conductivity. However, the numerical
di�culty with two-fluid evolution lies in the re-alignment
of the Lagrangian zones of the two species. To simplify
the model, we keep the baryons to be a fixed background
(physical explanations? reasonable??), i.e., its density,
enclosed mass, and velocity dispersion profiles do not
change w.r.t. time. With a fixed (baryon) component,
the re-alignment of baryonic Lagrangian zones become
trivial. In this set-up, the baryons do not participate in
the heat conduction, and baryons and DM interact only
through hydrostatic relaxation.

We consider the dark halo with Navarro-Frenk-White
(NFW) profile [43] and baryon distribution with Hern-
quist profile with two parameters (MH , rH). The
Hernquist profile has been used to model the baryonic
bulge [34] and the baryonic disk plus bulge [30]. The
potential, density, and the total mass of the Hernquist
profile are given by

�b(r) = �
GMH

r + rH
, Mb(r) =

MHr
2

(r + rH)2
,

⇢b(r) =
1

4⇡G
r

2�b(r) =
MHrH

2⇡r(r + rH)3
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we note that Mb(r = 1) = MH and Mb(r = rH) =
MH/4. Our choice of fiducial quantities are listed in
Tab. I. Consequently the dimensionless density and en-
closed mass profiles of baryons are given by

⇢̃b =
2M̃Hc

2
H

r̃(r̃cH + 1)3
, M̃b =

M̃H

(1 + 1/r̃cH)2
, (3)

where M̃H ⌘ MH/M0 is the mass fraction of baryons
inside a DM halo and cH ⌘ rs/rH signifies the concen-
tration of the baryon potential w.r.t. the DM halo.

Ref. [34] gives the following parameters for the bulge,
MH = 1.05 ⇥ 1010M�, rH = 0.46 kpc with low-
redshift NFW halo parameters ⇢s = 1.39⇥106 M�/kpc3,
rs = 42.18 kpc, M0 = 1.31 ⇥ 1012 M�. These result
in 2M̃Hc

2
H

= 134.7, 1/cH = 0.011, and M̃H = 0.008
as baryon-rich denoted by SIDM+Baryon (134.7). To
compare the abundance of baryon e↵ect, we consider
2M̃Hc

2
H

= 1.0, 1/cH = 0.011, and M̃H = 5.9 ⇥ 10�5

as baryon-poor denoted by SIDM+Baryon (1.0), and the
pure SIDM scenario.

The presence of baryonic potential disrupted the ther-
malization of the inner region. The luminosity of the in-
ner region becomes fully positive at an earlier time, with
a higher core density and smaller core size, in comparison

M0 = 4⇡⇢sr
3
s (�/m)0 = (rs⇢s)

�1

⌫0 = (4⇡G⇢s)
1/2rs L0 = (4⇡)5/2G3/2⇢5/2s r5s

t0 = (4⇡G⇢s)
�1/2 C0 = (4⇡G)3/2⇢5/2s r2s

TABLE I. Fiducial quantities, x0, and dimensionless vari-
ables, x̂ for gravothermal evolution

to the pure NFW case. Starting the thermal evolution
of the dark halo from LMFP region, a secondary core of
SMFP region (� ⌧ H) emerges [39, 40] near the end of
the collapse, see Fig. . Though it is unclear the collapse
will enter the exponential growth region, this may signal
the break-down of Newtonian gravity and a relativistic
treatment should be considered in the simulations. The
left (right) panel of Fig. 1 shows the evolution of the inner
most density profile for the set up �̂ = 0.01 (0.1). Increas-
ing the cross section of SIDM can reduce the collapse time
in pure SIDM case (Does SIDM+Baryon (134.7) speed
up too??). Most interestingly, given the same cross sec-
tion, adding baryons to the halo deepens its gravitational
potential near center and hence speeds up the collaps-
ing process. For example, SIDM+Baryon (134.7) with
�/m = 8.2 cm2

/g (�̂ = 0.1), the halo reaches the ex-
ponential growth region in a shorter time (t = 385.2t0)
comparing to the pure SIDM case (t = 1996.8t0). The
time reduction is about a factor of 5.
Early Formation of SMBH.— To resolve the SMBH

puzzle in re-ionization era, the following requirements are
needed:

1. Halo formation time < Seed black holes formation
time < 0.76 Gyr (z = 7).

2. Seed black hole is heavy enough (reaching the ob-
served SMBH mass at 0.76 Gyr by Eddington ac-
ceration).

3. The halo should be rare, but not extremely rare
(need more explanation??).

For pure SIDM halo, the collapse time is given by [35]

tc ⇡
150

�

t0

rs⇢s�/m
for rs⇢s�/m ⌧ 1, (4)

where t0 ⌘ 1/
p
4⇡G⇢s is the fiducial time.

If the universe is dominated by the matter and the
cosmological constant, the critical density
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3H2

8⇡G
=

3H2
0

8⇡G

⇥
(1 + z)3 + !

⇤
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and the cosmic time
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3H0

p
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ln


w

1/2

(1 + z)3/2
+

r
1 +

w

(1 + z)3

�

as functions of redshift z, whereH0 ⌘ 1.02⇥10�4
hMyr�1

is the Hubble constant today and we take h ⇡ 0.7, matter
fraction ⌦m,0 = 0.315 and cosmological constant fraction
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FIG. 1. Evolution of the inner density profiles. Upper left: low-redshift halo, �/m = 0.82 cm2/g (�̂ = 0.01). Upper right: low-
redshift halo, �/m = 8.2 cm2/g. The collapse time is reduced by a factor of 5.2. Bottom: high-redshift halo, �/m = 0.36 cm2/g
(�̂ = 0.19). The collapse time is reduced by a factor of 20.2. Note that the di↵erence in the initial stage of the evolution is due
to the fact we start the simulations with r̂inner most = 10�4 (10�2) for SIDM with baryons (pure SIDM).

⌦⇤ = 0.685 hence w ⌘ ⌦⇤/⌦m,0 = 2.17. For high red-
shift w is small comparing to (1 + z)3, we can approxi-
mate ⇢c ⇡ 42.8(1+z)3M�/kpc

3. The characteristic den-
sity and radius of a virialized NFW halo are respectively
given by [43]

⇢s =
200

3

c
3
200

Kc200

⇢c, rs =

✓
3M200

800⇡c3200⇢c

◆1/3

, (5)

where 200 represents that halo is defined as the region
with averaged density is 200 times of the critical density,
c200 = R200/rs and Kc200 = M200/M0. We thus deter-

mine the collapse time tc / r
�1
s

⇢
�3/2
s / M

�1/3
200 c

�7/2
200 (1+

z)�7/2. To reduce the collapse time e↵ectively, one can
require (1) an early halo formation (z ") or (2) a larger
concentration (c200 "). A less e↵ective way is to have a
larger halo mass.

The halo mass function can be predicted by the mat-
ter power spectrum via Press-Schechter formalism [44].
From the halo mass function, one can read the halo

mass that fluctuates several � away from the mean at
a given redshift z. In Fig. , we plot the mass corre-
sponds to 3�, 5�, 7�, 9� � fluctuations as a function of
redshift. We also plot the first SMBHs and their asscoci-
ated Eddington accretion lines given the Eddington time
tE = 45 Myr. To predict if we can reach the Edding-
ton accretion line, we also need to know the mass ratio
of the seed black hole M to the virialized halo M200.
Such mass ratio can be expressed as the product of the
following ratios

M

M200
=

M

M2nd

M2nd

M0

M0

M200
=

M

M2nd
⇣

1

Kc200

, (6)

where M2nd is the secondary core mass. M2nd/M0 is de-
noted as ⇣ and we found it is a function of (�/m)⇢srs via
scanning a series of �̂ through the semi-analytic simula-
tion, see Fig. . It is contrary to Ref. [41], which suggested
that ⇣ is a fixed value (0.025) for all �̂. The dependence
on �̂ arises because the radius of the secondary core de-
pends on the cross section. The secondary core arises
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• Summary of high redshift halo formed at  (473Myr):


 and 


 , 


and we pick , 


we find for  ( ), the collapse time:


• 8.3 Gyr for pure SIDM halo; 413 Myr for SIDM with baryons 


• A factor of 20 reduction !!


z = 10

ρc(z = 10) ≈ 5.71 × 104M⊙/kpc3 c200 = 3.9

→ ρs = 2.84 × 108M⊙/kpc3 rs = 8.9 kpc

MH = 8 × 1010M⊙ rH = 0.34 kpc

̂σ = 0.19 σ/m = 0.36 cm2/g

3

FIG. 1. Evolution of the inner density profiles. Upper left: low-redshift halo, �/m = 0.82 cm2/g (�̂ = 0.01). Upper right: low-
redshift halo, �/m = 8.2 cm2/g. The collapse time is reduced by a factor of 5.2. Bottom: high-redshift halo, �/m = 0.36 cm2/g
(�̂ = 0.19). The collapse time is reduced by a factor of 20.2. Note that the di↵erence in the initial stage of the evolution is due
to the fact we start the simulations with r̂inner most = 10�4 (10�2) for SIDM with baryons (pure SIDM).

⌦⇤ = 0.685 hence w ⌘ ⌦⇤/⌦m,0 = 2.17. For high red-
shift w is small comparing to (1 + z)3, we can approxi-
mate ⇢c ⇡ 42.8(1+z)3M�/kpc

3. The characteristic den-
sity and radius of a virialized NFW halo are respectively
given by [43]

⇢s =
200

3

c
3
200
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⇢c, rs =

✓
3M200

800⇡c3200⇢c
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, (5)

where 200 represents that halo is defined as the region
with averaged density is 200 times of the critical density,
c200 = R200/rs and Kc200 = M200/M0. We thus deter-

mine the collapse time tc / r
�1
s

⇢
�3/2
s / M

�1/3
200 c

�7/2
200 (1+

z)�7/2. To reduce the collapse time e↵ectively, one can
require (1) an early halo formation (z ") or (2) a larger
concentration (c200 "). A less e↵ective way is to have a
larger halo mass.

The halo mass function can be predicted by the mat-
ter power spectrum via Press-Schechter formalism [44].
From the halo mass function, one can read the halo

mass that fluctuates several � away from the mean at
a given redshift z. In Fig. , we plot the mass corre-
sponds to 3�, 5�, 7�, 9� � fluctuations as a function of
redshift. We also plot the first SMBHs and their asscoci-
ated Eddington accretion lines given the Eddington time
tE = 45 Myr. To predict if we can reach the Edding-
ton accretion line, we also need to know the mass ratio
of the seed black hole M to the virialized halo M200.
Such mass ratio can be expressed as the product of the
following ratios

M

M200
=

M

M2nd

M2nd

M0

M0

M200
=

M

M2nd
⇣

1

Kc200

, (6)

where M2nd is the secondary core mass. M2nd/M0 is de-
noted as ⇣ and we found it is a function of (�/m)⇢srs via
scanning a series of �̂ through the semi-analytic simula-
tion, see Fig. . It is contrary to Ref. [41], which suggested
that ⇣ is a fixed value (0.025) for all �̂. The dependence
on �̂ arises because the radius of the secondary core de-
pends on the cross section. The secondary core arises

Around 0.05 of the 
collapse time for 
pure SIDM case !! 

Navarro, Frenk & White, ApJ, 462, 563 (1996)
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• Inner/Secondary core emergence


• The mass of the inner core follows


• Direct Collapse of the inner core ??

4

FIG. 2. The halo mass from Press-Schechter formalism given
a redshift.

when the conductivity lmfp ' smfp and the conduc-
tion is maximized. This is the transitional radius rtran at
which the scattering is most e�cient, so rtran marks the
region that is “maximally opaque” to DM. Once DM can
no longer pass this radius, the second stage of collapse
begins. At this region, the pressure ptran ⇠ G(�/m)�2.
To see the nature of the dependence on �/m, we ap-
proximate the density profile at the time slice to be a
power-law relation with log-slope of k, ⇢ = ⇢⇤ (r⇤/r)

k;
we observe k = 2.2 but we will keep the discussion
general. The enclosed mass and pressure profiles are
respectively given by M =

R
r

0 dr
04⇡r02⇢ / r

3�k, p =
R1
r

dr
0GM⇢

r02 / r
2�2k

/ M
2�2k
3�k . Since ptran / (�/m)�2,

we have M2nd / (�/m)
3�k
k�1

k=2.2
����! (�/m)2/3. This rela-

tion is shown as gray dotted line in Fig. 3. An empirical
fitting gives

⇣ ⌘
M2nd

M0
= 0.075((�/m)rs⇢s)

2/3
. (7)

However, the relation of M/M2nd is still unclear. If we
assume it is 1 and c200 is given, we can correlate the
initial halo and the final seed BH.

It turns out for 3 � � halo, c200 needs to reach 20 in
order to touch the Eddington lines. Such high c200 seems
very unlikely given our knowledge of low-redshift halo.
For 5 � � halo, c200 = 4 yields a seed black hole that
grows into SMBH. Also note that for 5 � � halo, it is
more likely to have SMBH from direct collapse rather
than SMBH from collapse + Eddington accretion.

We now consider a high-redshift halo formed at z = 10
(t = 473 Myr) with dark halo mass around M200 = 2 ⇥
1012M�, SIDM cross section �/m = 0.36 cm2

/g, and

��-� ��-� ��-� ��-� ���
��-�

��-�

��-�

��-�

σ� = (σ/�) ��ρ�

ζ

�
Pollack et al

FIG. 3. M2nd/M0 as a function of (�/m)rs⇢s

total baryon mass around MH = 8 ⇥ 1010M�, which
follows a Hernquist profile with rH = 0.342 kpc. The
critical density ⇢c(z = 10) ⇡ 5.71⇥104M�/kpc

3. Taking
c200 = 3.9, the characteristic density and radius given by
Eq. (5) are ⇢s = 2.84 ⇥ 108M�/kpc

3
rs = 8.9 kpc. The

above correspond to the dimensionless quantities M̃H =
0.0317, 1/cH = 0.0385, �̂ = 0.19. For pure SIDM, the
collapse takes 8.3 Gyr; with baryons, the collapse takes
413 Myr, a factor of 20 reduction. See bottom panel of
Fig. 1
From the last four panels of ??, we see a secondary core

emerges near the end of the collapse. The secondary core
mass is about 7⇥10�3

M0 (radius??) and its temperature
can reach the relativistic regions. However, to see if the
secondary core can really collapse into a BH, we need a
relativistic treatment of the core.
Dynamical Instabilities.— In SMFP region (� ⌧ H),

we model the inner core submerged in a thermal bath
with b = kBTR/mc

2, where TR is the temperature T at
the core boundary R (� = H). At what temperature does
the core become unstable to collapse into a BH requires
a GR-version thermal evolution of fluid model [42]. How-
ever, under quasi-equilibrium approximation, we solve
the Tolman-Oppenheimer-Volkov (TOV) equation with
the core equation of state (EoS) of SIDM particles
obeying truncated Maxwell-Boltzmann (MB) distribu-
tion [46–48], see Supplemental Material for more details.
The dynamical instability in Newtonian gravity re-

quires the (pressure-averaged) adiabatic index of the core
h�i  �cr. = 4/3, whereas this can hardly be achieved
as 4/3  �  5/3 for ideal gas. In GR, the pres-
sure (thermal energy) plays a role in gravitational en-
ergy such that �cr. = 4/3+(pressure contribution). As a
result, far before the particles become ultra-relativistic,
h�i ! 4/3, it can reach the dynamical instability (DI)
condition h�i  �cr..

As the inner core is shrinking, the pressure will increase
to stabilize it. Until the pressure starts to dominate the
energy density p(0)/⇢(0) ⇠ 0.1c2, it meets the DI condi-
tion and starts to destabilize the core. The core then
undergoes an adiabatic contraction, leaving the outer

3

FIG. 1. Evolution of the inner density profiles. Upper left: low-redshift halo, �/m = 0.82 cm2/g (�̂ = 0.01). Upper right: low-
redshift halo, �/m = 8.2 cm2/g. The collapse time is reduced by a factor of 5.2. Bottom: high-redshift halo, �/m = 0.36 cm2/g
(�̂ = 0.19). The collapse time is reduced by a factor of 20.2. Note that the di↵erence in the initial stage of the evolution is due
to the fact we start the simulations with r̂inner most = 10�4 (10�2) for SIDM with baryons (pure SIDM).

⌦⇤ = 0.685 hence w ⌘ ⌦⇤/⌦m,0 = 2.17. For high red-
shift w is small comparing to (1 + z)3, we can approxi-
mate ⇢c ⇡ 42.8(1+z)3M�/kpc

3. The characteristic den-
sity and radius of a virialized NFW halo are respectively
given by [43]
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where 200 represents that halo is defined as the region
with averaged density is 200 times of the critical density,
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mine the collapse time tc / r
�1
s

⇢
�3/2
s / M

�1/3
200 c

�7/2
200 (1+

z)�7/2. To reduce the collapse time e↵ectively, one can
require (1) an early halo formation (z ") or (2) a larger
concentration (c200 "). A less e↵ective way is to have a
larger halo mass.

The halo mass function can be predicted by the mat-
ter power spectrum via Press-Schechter formalism [44].
From the halo mass function, one can read the halo

mass that fluctuates several � away from the mean at
a given redshift z. In Fig. , we plot the mass corre-
sponds to 3�, 5�, 7�, 9� � fluctuations as a function of
redshift. We also plot the first SMBHs and their asscoci-
ated Eddington accretion lines given the Eddington time
tE = 45 Myr. To predict if we can reach the Edding-
ton accretion line, we also need to know the mass ratio
of the seed black hole M to the virialized halo M200.
Such mass ratio can be expressed as the product of the
following ratios

M

M200
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=
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⇣

1
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, (6)

where M2nd is the secondary core mass. M2nd/M0 is de-
noted as ⇣ and we found it is a function of (�/m)⇢srs via
scanning a series of �̂ through the semi-analytic simula-
tion, see Fig. . It is contrary to Ref. [41], which suggested
that ⇣ is a fixed value (0.025) for all �̂. The dependence
on �̂ arises because the radius of the secondary core de-
pends on the cross section. The secondary core arises

4

FIG. 2. The halo mass from Press-Schechter formalism given
a redshift.

when the conductivity lmfp ' smfp and the conduc-
tion is maximized. This is the transitional radius rtran at
which the scattering is most e�cient, so rtran marks the
region that is “maximally opaque” to DM. Once DM can
no longer pass this radius, the second stage of collapse
begins. At this region, the pressure ptran ⇠ G(�/m)�2.
To see the nature of the dependence on �/m, we ap-
proximate the density profile at the time slice to be a
power-law relation with log-slope of k, ⇢ = ⇢⇤ (r⇤/r)

k;
we observe k = 2.2 but we will keep the discussion
general. The enclosed mass and pressure profiles are
respectively given by M =
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However, the relation of M/M2nd is still unclear. If we
assume it is 1 and c200 is given, we can correlate the
initial halo and the final seed BH.

It turns out for 3 � � halo, c200 needs to reach 20 in
order to touch the Eddington lines. Such high c200 seems
very unlikely given our knowledge of low-redshift halo.
For 5 � � halo, c200 = 4 yields a seed black hole that
grows into SMBH. Also note that for 5 � � halo, it is
more likely to have SMBH from direct collapse rather
than SMBH from collapse + Eddington accretion.

We now consider a high-redshift halo formed at z = 10
(t = 473 Myr) with dark halo mass around M200 = 2 ⇥
1012M�, SIDM cross section �/m = 0.36 cm2

/g, and

FIG. 3. M2nd/M0 as a function of (�/m)rs⇢s

total baryon mass around MH = 8 ⇥ 1010M�, which
follows a Hernquist profile with rH = 0.342 kpc. The
critical density ⇢c(z = 10) ⇡ 5.71⇥104M�/kpc

3. Taking
c200 = 3.9, the characteristic density and radius given by
Eq. (5) are ⇢s = 2.84 ⇥ 108M�/kpc

3
rs = 8.9 kpc. The

above correspond to the dimensionless quantities M̃H =
0.0317, 1/cH = 0.0385, �̂ = 0.19. For pure SIDM, the
collapse takes 8.3 Gyr; with baryons, the collapse takes
413 Myr, a factor of 20 reduction. See bottom panel of
Fig. 1
From the last four panels of ??, we see a secondary core

emerges near the end of the collapse. The secondary core
mass is about 7⇥10�3

M0 (radius??) and its temperature
can reach the relativistic regions. However, to see if the
secondary core can really collapse into a BH, we need a
relativistic treatment of the core.
Dynamical Instabilities.— In SMFP region (� ⌧ H),

we model the inner core submerged in a thermal bath
with b = kBTR/mc

2, where TR is the temperature T at
the core boundary R (� = H). At what temperature does
the core become unstable to collapse into a BH requires
a GR-version thermal evolution of fluid model [42]. How-
ever, under quasi-equilibrium approximation, we solve
the Tolman-Oppenheimer-Volkov (TOV) equation with
the core equation of state (EoS) of SIDM particles
obeying truncated Maxwell-Boltzmann (MB) distribu-
tion [46–48], see Supplemental Material for more details.
The dynamical instability in Newtonian gravity re-

quires the (pressure-averaged) adiabatic index of the core
h�i  �cr. = 4/3, whereas this can hardly be achieved
as 4/3  �  5/3 for ideal gas. In GR, the pres-
sure (thermal energy) plays a role in gravitational en-
ergy such that �cr. = 4/3+(pressure contribution). As a
result, far before the particles become ultra-relativistic,
h�i ! 4/3, it can reach the dynamical instability (DI)
condition h�i  �cr..

As the inner core is shrinking, the pressure will increase
to stabilize it. Until the pressure starts to dominate the
energy density p(0)/⇢(0) ⇠ 0.1c2, it meets the DI condi-
tion and starts to destabilize the core. The core then
undergoes an adiabatic contraction, leaving the outer

(empirical fitting)
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Pollack, Spergel & Steinhardt , ApJ, 804, 131 (2015)



Dynamical Instabilities

• The dynamical instability in Newtonian gravity requires the 
(pressure-averaged) adiabatic index of the core                   
, whereas                   for ideal gas.


• In GR, the pressure (thermal energy) plays a role in 
gravitational energy such that 


                        

⟨Γ⟩ ≤ Γcr. = 4/3
4/3 ≤ Γ ≤ 5/3

Γcr. = 4/3 + (pressure contribution)
Chandrasekhar, PRL, 12, 114; ApJ, 140, 417 (1964)



Dynamical Instabilities

• Truncated Maxwell-Boltzmann model


• The critical compactness 


• The critical central velocity dispersion
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core and extended halo in dynamical equilibrium [39, 40].
Since we do not know at exactly what b will the DI set in,
we show the marginal stable points at various b = 0.1,
0.3, 0.5, 1.0, 3.0, and 5.0 and the corresponding quan-
tities in Table. III. The central (three-dimensional) ve-
locity dispersion vd(0) for the onset of DI in this range
is around 0.55 ⇠ 0.57c, which agrees with the claim in
Ref. [39].

In the process of adiabatic contraction the inner core
stops losing its mass and becomes an isolated core of ideal
gas with volume V , the averaged pressure and tempera-
ture roughly follow hpiV

h�i =const., hT iV h�i�1 =const.
during a sequence of quasi-equilibrium stages. For � '

1.62, the temperature increases as hT i / R
�1.86 while the

pressure goes as hpi / R
�4.86 to counteract the gravita-

tional contraction when the core changes from one stage
to another. The pressure increases faster than the tem-
perature, thus the thermal energy is no longer helpful to
halt the contraction, i.e. h�i < �cr. holds during the pro-
cess. As there is no stable branch in the quasi-equilibrium
sequence, the contraction will continue until the core col-
lapses into a BH.

FIG. 4. Adiabatic indices as functions of vd(0) (truncated
MB model) at b = 0.1

The inner core mass remains around M ' 0.01M200

as it keeps shrinking. From Tab. IV, the instability can
be determined by the critical compactness Ccr. ' 10�2

given b = 0.1 but sometimes inconclusive. For exam-
ple, if M200 = 1012M� and R = 0.01pc, the compactness
C ⌘ GM/c

2
R = 4.7869⇥10�2 lies in both the stable and

unstable branches according to h�i = �cr.. In this case,
the central velocity dispersion vd(0)/c would be more de-
cisive, since it is monotonic with the central density, and
it would definitely collapse into a BH when vd(0) & 0.55c
at b = 0.1; see Fig. 4.

Angular Momentum of the Dark Halos.— The uni-
versal angular momentum profile of the dark halos has
been explored in Ref. [57–59]. To reach the direct col-

lapse into a BH without fragmentation, the angular mo-
mentum of the inner core must satisfy J < (G/c)M2

(the maximal angular momentum the BH can carry) or

the inner core even becomes quasi-spherical before it can
meet DI. To check this, we adopt the fitting function in
Ref. [59] with NFW profile to compute the angular mo-
mentum of the core. For a halo mass M200 = 1012M�
with concentration c200 = 4; and the core radius R starts
to form around 10% of rs (R/rs = 0.1), the core mass
is M = 5.44 ⇥ 109M� and the core angular momen-
tum J = 7.29 ⇥ 107M�·Mpc·km/s ' 102(G/c)M2

�

(G/c)M2 = 4.24 ⇥ 105M�·Mpc·km/s. This can hardly
lead to a direct collapse without fragmentation.
However, the angular momentum can be transported

outwards to the ambient (� & H) via viscosity due to
the self-interacting nature of SIDM. During gravothermal
evolution, the angular momentum of the core decays as
(see Supplemental Material for derivation)

J (t) = J (ti) exp

 
�

20⇡

3
p
6

Z
t

ti

p
b(t0)R(t0)

M(�/m)
cdt

0

!
, (8)

where ti can be taken as the secondary core starts to
form. Once we obtain the b(t) and R(t) as functions
of time, we can calculate the time �t = t � ti required
for J to dissipate lower than (G/c)M2 given J (ti) >

(G/c)M2. To estimate, if we take M = 1010M�, R '

0.1rs ' 1kpc, �/m = 3 cm2
/g, b = kBTR/mc

2
' 10�6.

The time �t for J (t) ' 10�4
J (ti) is around 2 ⇥ 1015

s ' 64 Myr, which can be less or around the collapse
time 101 ⇠ 102 Myr, as the viscosity and conductivity
share the same microscopic nature of “collisional” SIDM.
Hence, the DI under spherical symmetry serves a decent
model to determine the formation of SMBHs.
Conclusions.— Gravothermal evolution of a SIDM

dark halo naturally explains the formation of a SMBH
at its center via direct collapse of the inner core. Espe-
cially the inclusion of baryons deepens the gravitational
potential near center and expedites the collapsing pro-
cess. The reduction of collapse time for SIDM halo with
baryons could be a factor of 20 ⇠ 100 compared to the
pure SIDM case.

The inner core forms and becomes fluid-like when the
SMFP (� ⌧ H) region appears. The gravitational at-
traction shrinks the core; the heat conduction makes the
core hotter and hotter; the core mass remains fixed as
it depends only on the cross section �/m and halo pa-
rameters. The inner core can shed most of its angular
momentum to the outer core (� & H) within collapse
time 101 ⇠ 102 Myr well before it meets DI, where the
critical compactness Ccr. ' 10�2 and the central velocity
dispersion reaches vd(0) ' 0.55 ⇠ 0.57c.

Formation of a SMBH in this scenario can reach around
109 ⇠ 1010M� directly given the host halo mass '

1012M� without Eddington accretion and other BH seed
mechanism. For ... this resolves the SMBH puzzle in the
re-ionization era.
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TABLE III. Marginal stable points corresponding to di↵erent temperature parameters b = kBTR/mc2. We find it hard to
achieve the GR dynamical instability for b . 10�2. For b & 1.0 pair production e↵ects of SIDM need to be taken into account
and the results should be modified.

b W0 M̄ R̄ C = GM/c2R ✏c(0)/mc2 ⇢̄(0) p̄(0) vd(0)/c h�i = �cr.

5.0 6.46760⇥ 10�2 2.06291⇥ 10�1 2.59300⇥ 100 7.95569⇥ 10�2 4.77940⇥ 10�1 1.59029⇥ 10�1 1.69197⇥ 10�2 5.64962⇥ 10�1 1.62360
3.0 1.07885⇥ 10�1 1.58848⇥ 10�1 2.00200⇥ 100 7.93447⇥ 10�2 4.78539⇥ 10�1 2.68968⇥ 10�1 2.85863⇥ 10�2 5.64662⇥ 10�1 1.62359
1.0 3.25432⇥ 10�1 8.89055⇥ 10�2 1.13900⇥ 100 7.80557⇥ 10�2 4.82454⇥ 10�1 8.73831⇥ 10�1 9.24768⇥ 10�2 5.63460⇥ 10�1 1.62352
0.5 6.57400⇥ 10�1 5.98030⇥ 10�2 7.88001⇥ 10�1 7.58920⇥ 10�2 4.89672⇥ 10�1 1.99392⇥ 100 2.09844⇥ 10�1 5.61895⇥ 10�1 1.62234
0.3 1.11294⇥ 100 4.30745⇥ 10�2 5.94001⇥ 10�1 7.25159⇥ 10�2 5.01296⇥ 10�1 4.04500⇥ 100 4.22622⇥ 10�1 5.59857⇥ 10�1 1.62321
0.1 3.82510⇥ 100 1.47252⇥ 10�2 3.36001⇥ 10�1 4.38247⇥ 10�2 6.19961⇥ 10�1 5.81339⇥ 101 5.87858⇥ 100 5.50785⇥ 10�1 1.62163

TABLE IV. Stable, unstable, and marginal stable configurations for b = kBTR/mc2 = 0.1 by extremizing the (1) total energy
M̄, (2) binding energy Ēb = M̄0 � M̄, (3) fractional binding energy eb = Eb/M0, and checking the (4) adiabatic index. The
general feature is that the instabilities occur following the same order (1) ! (2) ! (3) ! (4) when increasing the central
density given the temperature b fixed. This pattern shows that h�i = �cr. is a su�cient condition but not a necessary condition
for the instability to set in.
W0 M̄ M̄0 Ēb eb R̄ C = GM/c2R ✏c(0)/mc2 ⇢̄(0) p̄(0) vd(0)/c h�i �cr.

0.1 2.72228⇥ 10�2 2.72883⇥ 10�2 6.55148⇥ 10�5 2.40084⇥ 10�3 6.81600⇥ 100 3.99396⇥ 10�3 1.01010⇥ 10�2 4.99973⇥ 10�4 1.42585⇥ 10�6 9.24965⇥ 10�2 1.66545 1.34071
0.3 3.30396⇥ 10�2 3.32694⇥ 10�2 2.29808⇥ 10�4 6.90749⇥ 10�3 2.88700⇥ 100 1.14442⇥ 10�2 3.09278⇥ 10�2 8.69198⇥ 10�3 7.40805⇥ 10�5 1.59902⇥ 10�1 1.66301 1.35558

0.6 3.47883⇥ 10�2 3.52449⇥ 10�2 4.56597⇥ 10�4 1.29550⇥ 10�2 1.63200⇥ 100 2.13164⇥ 10�2 6.38294⇥ 10�2 5.82063⇥ 10�2 9.86165⇥ 10�4 2.25450⇥ 10�1 1.65934 1.37813
1.1 3.30332⇥ 10�2 3.37502⇥ 10�2 7.16951⇥ 10�4 2.12429⇥ 10�2 9.57001⇥ 10�1 3.45175⇥ 10�2 1.23592⇥ 10�1 3.55962⇥ 10�1 1.09378⇥ 10�3 3.03616⇥ 10�1 1.65325 1.41627
1.5 3.03218⇥ 10�2 3.11429⇥ 10�2 8.21122⇥ 10�4 2.63663⇥ 10�2 7.17001⇥ 10�1 4.22897⇥ 10�2 1.76470⇥ 10�1 9.92442⇥ 10�1 4.1209⇥ 10�2 3.52943⇥ 10�1 1.64839 1.44714

1.9 2.73073⇥ 10�2 2.81588⇥ 10�2 8.51441⇥ 10�4 3.02371⇥ 10�2 5.72001⇥ 10�1 4.77400⇥ 10�2 2.34577⇥ 10�1 2.33058⇥ 100 1.21454⇥ 10�1 3.95398⇥ 10�1 1.64358 1.47815
2.3 2.42992⇥ 10�2 2.51263⇥ 10�2 8.27194⇥ 10�4 3.29214⇥ 10�2 4.76001⇥ 10�1 5.10485⇥ 10�2 2.98705⇥ 10�1 4.95282⇥ 100 3.09617⇥ 10�1 4.33059⇥ 10�1 1.63881 1.50912
2.7 2.14441⇥ 10�2 2.22097⇥ 10�2 7.65590⇥ 10�4 3.44709⇥ 10�2 4.12001⇥ 10�1 5.20488⇥ 10�2 3.69930⇥ 10�1 9.88713⇥ 100 7.19304⇥ 10�1 4.67177⇥ 10�1 1.63411 1.53982

3.1 1.88143⇥ 10�2 1.94951⇥ 10�2 6.80816⇥ 10�4 3.49225⇥ 10�2 3.68001⇥ 10�1 5.11256⇥ 10�2 4.49359⇥ 10�1 1.89551⇥ 101 1.57084⇥ 100 4.98613⇥ 10�1 1.62952 1.56996
3.4 1.70116⇥ 10�2 1.76204⇥ 10�2 6.08842⇥ 10�4 3.45532⇥ 10�2 3.48001⇥ 10�1 4.88837⇥ 10�2 5.15378⇥ 10�1 3.03421⇥ 101 2.74353⇥ 100 5.20825⇥ 10�1 1.62617 1.59194
3.6 1.58957⇥ 10�2 1.64547⇥ 10�2 5.58989⇥ 10�4 3.39715⇥ 10�2 3.39001⇥ 10�1 4.68897⇥ 10�2 5.62771⇥ 10�1 4.12780⇥ 101 3.93994⇥ 100 5.35113⇥ 10�1 1.62400 1.60616

3.8251 1.47252⇥ 10�2 1.52276⇥ 10�2 5.02425⇥ 10�4 3.29944⇥ 10�2 3.36001⇥ 10�1 4.38247⇥ 10�2 6.19961⇥ 10�1 5.81339⇥ 101 5.87858⇥ 100 5.50785⇥ 10�1 1.62163 1.62163
4.2 1.29883⇥ 10�2 1.33983⇥ 10�2 4.10007⇥ 10�4 3.06014⇥ 10�2 3.46001⇥ 10�1 3.75383⇥ 10�2 7.25068⇥ 10�1 1.02219⇥ 102 1.13099⇥ 101 5.76136⇥ 10�1 1.61795 1.64552
4.5 1.18133⇥ 10�2 1.21534⇥ 10�2 3.40139⇥ 10�4 2.79872⇥ 10�2 3.76001⇥ 10�1 3.14181⇥ 10�2 8.19670⇥ 10�1 1.60208⇥ 102 1.89661⇥ 101 5.95948⇥ 10�1 1.61537 1.66209
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Angular Momentum of the 
Dark Halos

• Universal angular momentum profile of dark halo?


• To reach the direct collapse into a BH without 
fragmentation, the angular momentum of the inner core 
must satisfy


• For halo mass  with concentration 
; the core radius starts to form around  , by 

using NFW profile and the fitting function from N-body 
simulations


M200 = 1012M⊙
c200 = 4 0.1rs
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core and extended halo in dynamical equilibrium [39, 40].
Since we do not know at exactly what b will the DI set in,
we show the marginal stable points at various b = 0.1,
0.3, 0.5, 1.0, 3.0, and 5.0 and the corresponding quan-
tities in Table. III. The central (three-dimensional) ve-
locity dispersion vd(0) for the onset of DI in this range
is around 0.55 ⇠ 0.57c, which agrees with the claim in
Ref. [39].

In the process of adiabatic contraction the inner core
stops losing its mass and becomes an isolated core of ideal
gas with volume V , the averaged pressure and tempera-
ture roughly follow hpiV

h�i =const., hT iV h�i�1 =const.
during a sequence of quasi-equilibrium stages. For � '

1.62, the temperature increases as hT i / R
�1.86 while the

pressure goes as hpi / R
�4.86 to counteract the gravita-

tional contraction when the core changes from one stage
to another. The pressure increases faster than the tem-
perature, thus the thermal energy is no longer helpful to
halt the contraction, i.e. h�i < �cr. holds during the pro-
cess. As there is no stable branch in the quasi-equilibrium
sequence, the contraction will continue until the core col-
lapses into a BH.

FIG. 4. Adiabatic indices as functions of vd(0) (truncated
MB model) at b = 0.1

The inner core mass remains around M ' 0.01M200

as it keeps shrinking. From Tab. IV, the instability can
be determined by the critical compactness Ccr. ' 10�2

given b = 0.1 but sometimes inconclusive. For exam-
ple, if M200 = 1012M� and R = 0.01pc, the compactness
C ⌘ GM/c

2
R = 4.7869⇥10�2 lies in both the stable and

unstable branches according to h�i = �cr.. In this case,
the central velocity dispersion vd(0)/c would be more de-
cisive, since it is monotonic with the central density, and
it would definitely collapse into a BH when vd(0) & 0.55c
at b = 0.1; see Fig. 4.

Angular Momentum of the Dark Halos.— The uni-
versal angular momentum profile of the dark halos has
been explored in Ref. [57–59]. To reach the direct col-

lapse into a BH without fragmentation, the angular mo-
mentum of the inner core must satisfy J < (G/c)M2

(the maximal angular momentum the BH can carry) or

the inner core even becomes quasi-spherical before it can
meet DI. To check this, we adopt the fitting function in
Ref. [59] with NFW profile to compute the angular mo-
mentum of the core. For a halo mass M200 = 1012M�
with concentration c200 = 4; and the core radius R starts
to form around 10% of rs (R/rs = 0.1), the core mass
is M = 5.44 ⇥ 109M� and the core angular momen-
tum J = 7.29 ⇥ 107M�·Mpc·km/s ' 102(G/c)M2

�

(G/c)M2 = 4.24 ⇥ 105M�·Mpc·km/s. This can hardly
lead to a direct collapse without fragmentation.
However, the angular momentum can be transported

outwards to the ambient (� & H) via viscosity due to
the self-interacting nature of SIDM. During gravothermal
evolution, the angular momentum of the core decays as
(see Supplemental Material for derivation)

J (t) = J (ti) exp

 
�

20⇡

3
p
6

Z
t

ti

p
b(t0)R(t0)

M(�/m)
cdt

0

!
, (8)

where ti can be taken as the secondary core starts to
form. Once we obtain the b(t) and R(t) as functions
of time, we can calculate the time �t = t � ti required
for J to dissipate lower than (G/c)M2 given J (ti) >

(G/c)M2. To estimate, if we take M = 1010M�, R '

0.1rs ' 1kpc, �/m = 3 cm2
/g, b = kBTR/mc

2
' 10�6.

The time �t for J (t) ' 10�4
J (ti) is around 2 ⇥ 1015

s ' 64 Myr, which can be less or around the collapse
time 101 ⇠ 102 Myr, as the viscosity and conductivity
share the same microscopic nature of “collisional” SIDM.
Hence, the DI under spherical symmetry serves a decent
model to determine the formation of SMBHs.
Conclusions.— Gravothermal evolution of a SIDM

dark halo naturally explains the formation of a SMBH
at its center via direct collapse of the inner core. Espe-
cially the inclusion of baryons deepens the gravitational
potential near center and expedites the collapsing pro-
cess. The reduction of collapse time for SIDM halo with
baryons could be a factor of 20 ⇠ 100 compared to the
pure SIDM case.

The inner core forms and becomes fluid-like when the
SMFP (� ⌧ H) region appears. The gravitational at-
traction shrinks the core; the heat conduction makes the
core hotter and hotter; the core mass remains fixed as
it depends only on the cross section �/m and halo pa-
rameters. The inner core can shed most of its angular
momentum to the outer core (� & H) within collapse
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In the process of adiabatic contraction the inner core
stops losing its mass and becomes an isolated core of ideal
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to another. The pressure increases faster than the tem-
perature, thus the thermal energy is no longer helpful to
halt the contraction, i.e. h�i < �cr. holds during the pro-
cess. As there is no stable branch in the quasi-equilibrium
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lapses into a BH.
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the inner core even becomes quasi-spherical before it can
meet DI. To check this, we adopt the fitting function in
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with concentration c200 = 4; and the core radius R starts
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s ' 64 Myr, which can be less or around the collapse
time 101 ⇠ 102 Myr, as the viscosity and conductivity
share the same microscopic nature of “collisional” SIDM.
Hence, the DI under spherical symmetry serves a decent
model to determine the formation of SMBHs.
Conclusions.— Gravothermal evolution of a SIDM

dark halo naturally explains the formation of a SMBH
at its center via direct collapse of the inner core. Espe-
cially the inclusion of baryons deepens the gravitational
potential near center and expedites the collapsing pro-
cess. The reduction of collapse time for SIDM halo with
baryons could be a factor of 20 ⇠ 100 compared to the
pure SIDM case.

The inner core forms and becomes fluid-like when the
SMFP (� ⌧ H) region appears. The gravitational at-
traction shrinks the core; the heat conduction makes the
core hotter and hotter; the core mass remains fixed as
it depends only on the cross section �/m and halo pa-
rameters. The inner core can shed most of its angular
momentum to the outer core (� & H) within collapse
time 101 ⇠ 102 Myr well before it meets DI, where the
critical compactness Ccr. ' 10�2 and the central velocity
dispersion reaches vd(0) ' 0.55 ⇠ 0.57c.

Formation of a SMBH in this scenario can reach around
109 ⇠ 1010M� directly given the host halo mass '

1012M� without Eddington accretion and other BH seed
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where M(r, t) is the total mass enclosed within r at
time t, ⇢X(r, t) is the local density, ⌫X(r, t) is the one-
dimensional velocity dispersion, LX(r, t) is the luminos-
ity, �X is the self-interaction strength of species X = �

(DM) or b (baryons), G is the Newton’s constant, and
(@t)M denotes the Lagrangian time derivative. The pa-
rameters ↵ = (16/⇡)1/2 = 2.257, � = (25/32)⇡1/2 =
1.385 are given by kinetic theory, and � = 0.753 is by
matching fluid model to the results of N-body simula-
tion [35]. For baryons we only keep the SMFP conduc-
tivity. However, the numerical di�culty with two-fluid
evolution lies in the re-alignment of the Lagrangian zones
of the two species. To simplify the model, we keep the
baryons to be a fixed background (physical explanations?
reasonable??), i.e., its density, enclosed mass, and veloc-
ity dispersion profiles do not change w.r.t. time. With
a fixed (baryon) component, the re-alignment of bary-
onic Lagrangian zones become trivial. In this set-up, the
baryons do not participate in the heat conduction, and
baryons and DM interact only through hydrostatic relax-

ation.
We consider the dark halo with Navarro-Frenk-White

(NFW) profile [43] and baryon distribution with Hern-
quist profile parametrized by parameters (MH , rH). The
Hernquist profile has been used to model the baryonic
bulge [34] and the baryonic disk plus bulge [30]. The
potential, density, and the total mass of the Hernquist
profile are given by
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we note that Mb(r = 1) = MH and Mb(r = rH) =
MH/4. Our choice of fiducial quantities are listed in
Tab. I. Consequently the dimensionless density and en-
closed mass profiles of baryons are given by
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where M̂H ⌘ MH/M0 is the mass fraction of baryons
inside a DM halo and cH ⌘ rs/rH signifies the concen-
tration of the baryon potential w.r.t. the DM halo.

Ref. [34] gives the following parameters for the bulge,
MH = 1.05 ⇥ 1010M�, rH = 0.46 kpc with low-
redshift NFW halo parameters ⇢s = 1.39⇥106 M�/kpc3,
rs = 42.18 kpc, M0 = 1.31 ⇥ 1012 M�. These result
in 2M̂Hc

2
H

= 134.7, 1/cH = 0.011, and M̂H = 0.008
as baryon-rich denoted by SIDM+Baryon (134.7). To
compare the abundance of baryon e↵ect, we consider
2M̂Hc

2
H

= 1.0, 1/cH = 0.011, and M̂H = 5.9 ⇥ 10�5

as baryon-poor denoted by SIDM+Baryon (1.0), and the
pure SIDM scenario.

The presence of baryonic potential disrupted the ther-
malization of the inner region. The luminosity of the in-
ner region becomes fully positive at an earlier time, with
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3
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TABLE I. Fiducial quantities, x0, and dimensionless vari-
ables, x̂ for gravothermal evolution

a higher core density and smaller core size, in comparison
to the pure NFW case. Starting the thermal evolution
of the dark halo from LMFP region, a secondary core of
SMFP region (� ⌧ H) emerges [39, 40] near the end of
the collapse, see Fig. . Though it is unclear the collapse
will enter the exponential growth region, this may signal
the break-down of Newtonian gravity and a relativistic
treatment should be considered in the simulations. The
left (right) panel of Fig. 1 shows the evolution of the inner
most density profile for the set up �̂ = 0.01 (0.1). Increas-
ing the cross section of SIDM can reduce the collapse time
in pure SIDM case (Does SIDM+Baryon (134.7) speed
up too??). Most interestingly, given the same cross sec-
tion, adding baryons to the halo deepens its gravitational
potential near center and hence speeds up the collaps-
ing process. For example, SIDM+Baryon (134.7) with
�/m = 8.2 cm2

/g (�̂ = 0.1), the halo reaches the ex-
ponential growth region in a shorter time (t = 385.2t0)
comparing to the pure SIDM case (t = 1996.8t0). The
time reduction is about a factor of 5.
Early Formation of SMBH.— To resolve the SMBH

puzzle in re-ionization era, the following requirements are
needed:

1. Halo formation time < Seed black holes formation
time < 0.76 Gyr (z = 7).

2. Seed black hole is heavy enough (reaching the ob-
served SMBH mass at 0.76 Gyr by Eddington ac-
ceration).

3. The halo should be rare, but not extremely rare
(need more explanation??).

For pure SIDM halo, the collapse time is given by [35]

tc ⇡
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for �̂ = rs⇢s�/m ⌧ 1, (4)

where t0 ⌘ 1/
p
4⇡G⇢s is the fiducial time.

If the universe is dominated by the matter and the
cosmological constant, the critical density
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as functions of redshift z, whereH0 ⌘ 1.02⇥10�4
hMyr�1

is the Hubble constant today and we take h ⇡ 0.7, matter
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Around 0.04 of the 
collapse time for 
pure SIDM case !! 



Summary
• For pure SIDM, the inner core mass follows


• Qualitatively, for SIDM halo with baryons: larger  ; smaller  will 
lead to a faster collapse.


• The sufficient condition for the inner core to collapse into a BH: 
.


• The angular momentum of SIDM halo can be transported out within 
the collapse time, and a Direct Collapse of a BH   
before redshift  is possible !!


MH rH

vd(0) ≃ 0.55 ∼ 0.57c

∼ 109 − 1010M⊙
z = 7

Thanks for your attention !
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FIG. 2. The halo mass from Press-Schechter formalism given
a redshift.

when the conductivity lmfp ' smfp and the conduc-
tion is maximized. This is the transitional radius rtran at
which the scattering is most e�cient, so rtran marks the
region that is “maximally opaque” to DM. Once DM can
no longer pass this radius, the second stage of collapse
begins. At this region, the pressure ptran ⇠ G(�/m)�2.
To see the nature of the dependence on �/m, we ap-
proximate the density profile at the time slice to be a
power-law relation with log-slope of k, ⇢ = ⇢⇤ (r⇤/r)

k;
we observe k = 2.2 but we will keep the discussion
general. The enclosed mass and pressure profiles are
respectively given by M =

R
r

0 dr
04⇡r02⇢ / r

3�k, p =
R1
r

dr
0GM⇢

r02 / r
2�2k

/ M
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3�k . Since ptran / (�/m)�2,

we have M2nd / (�/m)
3�k
k�1

k=2.2
����! (�/m)2/3. This rela-

tion is shown as gray dotted line in Fig. 3. An empirical
fitting gives

⇣ ⌘
M2nd

M0
= 0.075((�/m)rs⇢s)

2/3
. (7)

However, the relation of M/M2nd is still unclear. If we
assume it is 1 and c200 is given, we can correlate the
initial halo and the final seed BH.

It turns out for 3 � � halo, c200 needs to reach 20 in
order to touch the Eddington lines. Such high c200 seems
very unlikely given our knowledge of low-redshift halo.
For 5 � � halo, c200 = 4 yields a seed black hole that
grows into SMBH. Also note that for 5 � � halo, it is
more likely to have SMBH from direct collapse rather
than SMBH from collapse + Eddington accretion.

We now consider a high-redshift halo formed at z = 10
(t = 473 Myr) with dark halo mass around M200 = 2 ⇥
1012M�, SIDM cross section �/m = 0.36 cm2

/g, and

FIG. 3. M2nd/M0 as a function of (�/m)rs⇢s

total baryon mass around MH = 8 ⇥ 1010M�, which
follows a Hernquist profile with rH = 0.342 kpc. The
critical density ⇢c(z = 10) ⇡ 5.71⇥104M�/kpc

3. Taking
c200 = 3.9, the characteristic density and radius given by
Eq. (5) are ⇢s = 2.84 ⇥ 108M�/kpc

3
rs = 8.9 kpc. The

above correspond to the dimensionless quantities M̃H =
0.0317, 1/cH = 0.0385, �̂ = 0.19. For pure SIDM, the
collapse takes 8.3 Gyr; with baryons, the collapse takes
413 Myr, a factor of 20 reduction. See bottom panel of
Fig. 1
From the last four panels of ??, we see a secondary core

emerges near the end of the collapse. The secondary core
mass is about 7⇥10�3

M0 (radius??) and its temperature
can reach the relativistic regions. However, to see if the
secondary core can really collapse into a BH, we need a
relativistic treatment of the core.
Dynamical Instabilities.— In SMFP region (� ⌧ H),

we model the inner core submerged in a thermal bath
with b = kBTR/mc

2, where TR is the temperature T at
the core boundary R (� = H). At what temperature does
the core become unstable to collapse into a BH requires
a GR-version thermal evolution of fluid model [42]. How-
ever, under quasi-equilibrium approximation, we solve
the Tolman-Oppenheimer-Volkov (TOV) equation with
the core equation of state (EoS) of SIDM particles
obeying truncated Maxwell-Boltzmann (MB) distribu-
tion [46–48], see Supplemental Material for more details.
The dynamical instability in Newtonian gravity re-

quires the (pressure-averaged) adiabatic index of the core
h�i  �cr. = 4/3, whereas this can hardly be achieved
as 4/3  �  5/3 for ideal gas. In GR, the pres-
sure (thermal energy) plays a role in gravitational en-
ergy such that �cr. = 4/3+(pressure contribution). As a
result, far before the particles become ultra-relativistic,
h�i ! 4/3, it can reach the dynamical instability (DI)
condition h�i  �cr..

As the inner core is shrinking, the pressure will increase
to stabilize it. Until the pressure starts to dominate the
energy density p(0)/⇢(0) ⇠ 0.1c2, it meets the DI condi-
tion and starts to destabilize the core. The core then
undergoes an adiabatic contraction, leaving the outer


