Search for WIMP Annual Modulation in 3.2 years of CDEX data

Li, Hau-Bin 李浩斌 Academia Sinica 中央研究院 2020/01/10

<u>OUTLINE</u>

- CDEX-1B experiment, data quality
- Annual Modulation (AM) analysis
- AM Results
- Migdal effect

NCTS Dark Physics Workshop 2020

Annual Modulation of WIMPs

- velocity (earth ref.) of WIMP: max. at Jun, min. at Dec.
- look at Jun-Dec spec. diff.
- need stable run > 1 years
- decouple unexplained excess count

time-integrated vs. annual modulation

time-integrated	annual modulation
search for excess count (large)	search for different of count (small)
energy spectrum modeling (a lot of simulation \rightarrow uncertainties)	time variation modeling (assume it is constant)
best sensitivities always at lowest energy (large uncertainties)	best sensitivities occur at higher energy (noise-free)

both are dark matter model dependent, both are needed for positive/negative results

Jinping Hydroelectric Power Plants Jinping-II 4 hydraulic **Power Plant** tunnels 4800MW Φ13m×16.6km (WM006×8) Depth, meters of standard rock moun intensity m²/Yr 1000 2000 Kamioka 松林坪沟

锦屏

360万kW

大奔流沟

Natural Water 15/1

Vertical drop 310m

最峰桥

印坝子沟

DUSEL 4850

Depth (MWE)

2.4 km of rock

锦屏二级

CJPL

Jinping-I **Power Plant** 3600MW (6×600MW)

TEREN

CDEX at CJPL-I

tunnel entrance

CDEX-1 experiment

- 1. HPGe technology
 - Designed the first one single module 1kg-scale p-type point-contact Ge detector (1kg-PPCGe) "prototype" CDEX-1A
 - ✓ Improved 1kg-PPCGe CDEX-1B
- 2. Active shielding technology: NaI(TI) used as anti-Compton detector
 - ✓ CDEX-1A 1kg-PPCGe run
 - ✓ CDEX-1A 1kg-PPCGe + Nal(Tl) run (th~475 eV)
 - ✓ CDEX-1B 1kg-PPCGe + Nal(Tl) run (th~160 eV)

CDEX-1A 1kg PCGe

CDEX-1B 1kg PCGe

20cm OFHC Copper +20cm Lead

<u>CDEX-1B experiment</u>

- 1 kg-scale-mass HPGe detector, cooled by cold finger.
- A NaI(TI) detector is used as active shielding to veto the gamma-ray induced background events.
- The detector has been under stable data taking conditions since March 27th, 2014.
- Threshold ~ 160 eVee. For modulation analysis, threshold ~ 250 eVee.
- Largest analysis uncertainties: bulk/surface separation at low energy.

bulk/surface: largest sources of uncertainties

a curse : contaminate low energy spectrum

sample from typical DM/v events (TEXONO), cosmic-vetoed + anti-Compton-vetoed

<u>most probable rise-time</u> <u>distributions</u>

- all the events samples share same bulk/surface rise-time distributions.
- unknown rise-time functions \rightarrow bin-by-bin fitted.
- treat each month as individual sources.

<u>CDEX-1B data < 0.85 keV</u>

- run-1 to run-2: change of shielding.
- 0.25 0.85 keV:

most important region for low mass WIMP

 χ2 test, (mean, RMS) consistent with null profile.

<u>Model dependent/independent</u> <u>modulation analysis</u>

fit the data to flat-bkg + cos (after K/L subtraction)

$$\begin{split} \chi_{ik}^2 = \sum_{j \in \text{Time}}^N \frac{(n_{ijk} - P_{ijk} - B_{ik} - A_{ik} cos(\frac{2\pi(t_j - \phi)}{T_{yr}}))^2}{\Delta_{ijk}^2} \\ \text{i, j, k: energy-bin, time-bin, number of run} \end{split}$$

- n_{ijk} : count rates
- P_{ijk} : contributions from K/L-shells
 - B_{ik} : time-independent background level, to be fitted

A_{ik} of Halo-model -

 A_{ik} : modulation amplitudes, to be fitted.

Model independent: modulation amplitudes of each χ^2_{ik} Model dependent: astrophysics dependent A_{ik} , sum over χ^2_{ik}

Model independent modulation

modulation amplitudes consistent with null-results by χ^2 test and (mean, RMS)

best annual modulation sensitivities < 6 GeV

at < 20 GeV, best fitted phase is off by ~100 days, however $\Delta \phi > 0.5$ years (any ϕ is within 1- σ) data consistent with null-hypothesis at any ϕ

the results consistent with null-results at any phase (within 2- σ) up to 100 GeV

Migdal effect

nuclear recoil \rightarrow electrons cloud move, except one e- \rightarrow ionization

Migdal effect

- probing m_{χ} to < 1 GeV, PHYSICAL REVIEW LETTERS 123, 161301 (2019)
- best time-integrated results < 0.1 GeV
- best annual modulation results < 1 GeV

<u>summary</u>

- best modulation (χN) results < 6 GeV.
- best Migdal effect results at < 1 GeV.
- unique stable low threshold (250 eVee) Ge data with long time-span ~ 3.2 years.
- exclude DAMA phase-1 and CoGeNT at > 99.99%, 98% C.L.
- data consistent with null-hypothesis.
- other results (e.g. dark photon search, Axion search) will be available soon.
- diurnal analysis, frequency analysis on the way.

Thanks