

Running vacuum model in non-flat universe

Yan-Ting Hsu

National Tsing Hua University

NCTS Dark Physics Workshop (January 10, 2020)

- Motivation
- ➢Running vacuum model (RVM) in non-flat universe
- ► Numerical results for RVM
 - ➤Theoretical CMB power spectra
 - ➢Global fitting of cosmological parameters with observational data

Motivation

Running vacuum model (RVM) in non-flat universe
 Numerical results for RVM
 Theoretical CMB power spectra
 Global fitting of cosmological parameters with observational data

Spatially-flat models

- ≻∧CDM model
 - Fine-tunning problem
 - Coincidence problem
- Dynamical dark energy models
 - ho_Λ varies with time

 \blacktriangleright Alleviate Hubble tension and σ_8 tension

Non-flat universe

Planck 2018 data favor closed universe at more than 99% confidence level.

[E. D. Valentino et al., Nat. Astron. (2019)]

Non-flat models

- $\succ \Omega_K$ is also dynamical.
 - There is degeneracy between Ω_K and other parameters.

Motivate us to study on dynamical dark energy models in non-flat universe and find constraints of cosmological parameters.

> Motivation

➢Running vacuum model (RVM) in non-flat universe

>Numerical results for RVM

>Theoretical CMB power spectra

Solutional Generational Generational Generational Generational Generational Generational Generational Generational Generation Science Science

Friedmann equations

Einstein's equation is reduced to Friedmann equations in homogeneous and isotropic universe.

$$H^2 = \frac{8\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda) - \frac{K}{a^2},$$

$$\dot{H} = -4\pi G(\rho_m + \rho_r + \rho_\Lambda + P_m + P_r + P_\Lambda) + \frac{K}{a^2}$$

Density parameters

$$\Omega_m = \frac{8\pi G\rho_m}{3H^2}, \quad \Omega_r = \frac{8\pi G\rho_r}{3H^2}, \quad \Omega_\Lambda = \frac{8\pi G\rho_\Lambda}{3H^2}, \quad \Omega_K = \frac{-K}{a^2H^2}$$

► Equation of state in RVM

$$w_{m,r,\Lambda} = \frac{P_{m,r,\Lambda}}{\rho_{m,r,\Lambda}} = 0, \frac{1}{3}, -1$$

Running vacuum model (RVM)

➢Running vacuum model (RVM)

 ρ_Λ is defined as a function of the Hubble parameter

 ho_Λ transfer energy to matter and radiation as the evolution of the universe

► RVM in flat universe

$$\rho_{\Lambda} = \frac{1}{8\pi G} \left\{ 3\nu H^2 + \Lambda_0 \right\}$$

► RVM in non-flat universe

$$\rho_{\Lambda} = \frac{1}{8\pi G} \left\{ 3\nu (H^2 - H_0^2) + 3\nu (\frac{K}{a^2} - K) + \Lambda_0 \right\}$$

Running vacuum model (RVM) ≻Energy exchanges between components

$$\dot{\rho}_{m,r} + 3H(1+w_{m,r})\rho_{m,r} = Q_{m,r},$$
$$\dot{\rho}_{\Lambda} + 3H(1+w_{\Lambda})\rho_{\Lambda} = -Q,$$

Evolutions of energy densities

$$Q_{m,r} = -\frac{\dot{\rho}_{\Lambda}(\rho_{m,r} + P_{m,r})}{\rho_M + P_M} = 3\nu H(1 + w_{m,r})\rho_{m,r}$$

$$\rho_{m,r} = \rho_{m,r}^{(0)} a^{-3(1+w_{m,r})(1-\nu)}$$

 $\rho_{\Lambda} = \rho_{\Lambda}^{(0)} + \frac{\nu}{1-\nu} \left\{ \rho_{m}^{(0)} \left[a^{-3(1-\nu)} - 1 \right] + \rho_{r}^{(0)} \left[a^{-4(1-\nu)} - 1 \right] \right\}$ The component of ρ_{Λ} in RVM is the same in flat and non-flat universe

Motivation

Running vacuum model (RVM) in non-flat universe

► Numerical results for RVM

➤Theoretical CMB power spectra

Global fitting of cosmological parameters with observational data

Method to find constraints

- CAMB package (by Antony Lewis) :
 - Code for Anisotropies in the Microwave Background
 - Solve Boltzmann equations and compute theoretical CMB power spectra and matter power spectrum with a given set of cosmological parameters.
 - We modify the background density evolutions and evolution of the density perturbation.

Theoretical CMB power spectra

- \succ RVM will reduce to \land CDM when v = 0 and $\Omega_K = 0$.
- \succ 0.0 < v < 0.001 and 0.0 > Ω_K > −0.01 fit well to Planck 2018 data.

Theoretical CMB power spectra

- \succ Residues with respect to Λ CDM in flat universe.
- > Degeneracy between v = 0.001, $\Omega_K = 0.0$ (green solid line) and v = 0.0, $\Omega_K = -0.01$ (purple dashed line).

Motivation

Running vacuum model (RVM) in non-flat universe

► Numerical results for RVM

➢ Theoretical CMB power spectra

Global fitting of cosmological parameters with observational data

Method to find constraints

- CosmoMC package (by Antony Lewis) :
 - Markov-Chain Monte-Carlo (MCMC) engine
 - Fit the model from the observational data and give the constraints on cosmological parameters.

Method to find constraints

- Data sets
 - CMB: Planck 2015

(TT, TE, EE, lowTEB, low-l polarization from SMICA)

- BAO: baryon acoustic oscillation data from 6dF Galaxy Survey and BOSS
- SN: supernovae data from (JLA) compilation
- WL: weak lensing data form CFHTLenS
- $f\sigma_8$ data

Global fitting in non-flat universe

Parameter	CMB+BAO+SN		m CMB+BAO+SN + $WL+f\sigma_8$	
Model	RVM	ACDM	RVM	ΛCDM
$100\Omega_b h^2$	2.22 ± 0.05	2.24 ± 0.05	2.21 ± 0.05	2.22 ± 0.05
$100\Omega_c h^2$	11.8 ± 0.4	11.8 ± 0.4	11.8 ± 0.4	11.8 ± 0.4
100τ	$11.6\substack{+5.5 \\ -5.7}$	$12.3\substack{+5.3 \\ -5.9}$	$9.0\substack{+6.4\\-7.1}$	$10.8\substack{+6.1 \\ -7.2}$
$10^3\Omega_K$	$1.68\substack{+7.75\\-6.97}$	$0.32\substack{+6.99\\-6.39}$	$7.02\substack{+7.80 \\ -9.04}$	$7.03\substack{+6.84 \\ -7.87}$
$\Sigma m_{ u}$	< 0.434	< 0.395	$0.416\substack{+0.311\\-0.407}$	$0.497\substack{+0.335\\-0.387}$
$10^4 \nu$	< 1.50	-	< 1.65	_
H_0	$67.6\substack{+1.5 \\ -1.4}$	$67.8^{+1.4}_{-1.5}$	$67.6\substack{+1.5 \\ -1.4}$	$67.7^{+1.4}_{-1.5}$
σ_8	$0.836\substack{+0.054\\-0.062}$	$0.843\substack{+0.052\\-0.059}$	0.759 ± 0.039	$0.756\substack{+0.040\\-0.037}$
$\chi^2_{best-fit}$	2039.18	2038.45	2089.66	2089.66

> In non-flat universe, RVM and Λ CDM are in consistent with χ^2 fitting.

The σ_8 tension between data sets is alleviated in RVM.

Constraint at 99% C.L. (v constraint in 68% C.L.)

Global fitting in non-flat universe

Parameter	CMB+BAO+SN		$ m CMB+BAO+SN +WL+f\sigma_8$	
Model	RVM	ΛCDM	RVM	ΛCDM
$100\Omega_b h^2$	2.22 ± 0.05	2.24 ± 0.05	2.21 ± 0.05	2.22 ± 0.05
$100\Omega_c h^2$	11.8 ± 0.4	11.8 ± 0.4	11.8 ± 0.4	11.8 ± 0.4
100τ	$11.6\substack{+5.5 \\ -5.7}$	$12.3\substack{+5.3 \\ -5.9}$	$9.0\substack{+6.4\\-7.1}$	$10.8\substack{+6.1 \\ -7.2}$
$10^{3}\Omega_{K}$	$1.68\substack{+7.75\\-6.97}$	$0.32\substack{+6.99 \\ -6.39}$	$7.02\substack{+7.80 \\ -9.04}$	$7.03\substack{+6.84 \\ -7.87}$
$\Sigma m_{ u}$	< 0.434	< 0.395	$0.416\substack{+0.311\\-0.407}$	$0.497\substack{+0.335\\-0.387}$
$10^4 \nu$	< 1.50	_	< 1.65	_
H_0	$67.6^{+1.5}_{-1.4}$	$67.8^{+1.4}_{-1.5}$	$67.6^{+1.5}_{-1.4}$	$67.7^{\pm1.4}_{-1.5}$
σ_8	$0.836\substack{+0.054\\-0.062}$	$0.843\substack{+0.052\\-0.059}$	0.759 ± 0.039	$0.756\substack{+0.040\\-0.037}$
$\chi^2_{best-fit}$	2039.18	2038.45	2089.66	2089.66

Constraint at 99% C.L. (v constraint in 68% C.L.)

We constraint $\nu \leq O(10^{-4})$ and $|\Omega_K| \leq O(10^{-2})$ for RVM in non-flat universe.

- Compare with RVM in flat universe in previous work:
 - The constraints of ν and $\sum m_{\nu}$ is relaxed in non-flat universe.
 - The constraints of ν and $\sum m_{\nu}$ is of the same order as in flat universe.

Motivation

Running vacuum model (RVM) in non-flat universe

>Numerical results for RVM

>Theoretical CMB power spectra

Solutional Generational Generational Generational Generational Generational Generational Generational Generational Generation Science Science

- \succ In non-flat universe, RVM and Λ CDM are in consistent with χ^2 fitting.
- ➤The constraints of v in RVM does not broaden significantly when curvature is involved.
- Involvement of curvature provide us a chance to get non-zero lower bound of neutrino mass in cosmological models.

THANK YOU