Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary

Cosmological Dynamics and Double Screening of DBI-Galileon Gravity

Sirachak Panpanich with S. Ponglertsakul, and K. Maeda

Chulalongkorn U. (move to Waseda U. in April)

January 10, 2020

Phys.Rev.D 100 (2019) no.4, 044038

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Outline			

2 Cosmological dynamics of DBI galileon

3 Screening mechanism

Introduction and Motivation •00000	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Introduction			

Scalar field is one of the successful candidates for dark energy.

https://map.gsfc.nasa.gov/media/060915/index.html

Candidates for dark energy:

- Cosmological constant
- Scalar field
- f(R) gravity
- ...

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary
00000		00	O
Introduction			

Quintessence model:

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} (\partial\phi)^2 - V(\phi) \right]$$

When the scalar field is rolling slowly,

$$w_{\phi} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \approx -1$$

However...

We have never detected the scalar field!

Degrees of freedom: 2+1

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Introduction			

Q: How to hide the scalar field from observations?

A: Using screening mechanism

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Introduction			

Q: How to hide the scalar field from observations?

A: Using screening mechanism

Q: What is the screening mechanism?

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary 0
Introduction			

Q: How to hide the scalar field from observations?

A: Using screening mechanism

Q: What is the screening mechanism?

A: A mechanism which suppresses a fifth force comparing to the Newtonian force, i.e. $F_{\phi}/F_N \ll 1$.

fifth force?

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Introduction			

If a scalar field has interaction with matter field, we obtain a fifth force as

$$F^i_{\phi} = -\underbrace{\left(\frac{1}{A}\frac{\partial A}{\partial \phi}\right)}_{\text{coupling const.}}\partial^i\phi \quad ; \quad A(\phi) = \text{conformal factor}$$

 \ast we can prove by using conformal transformation on geodesic equation.

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Introduction			

If a scalar field has interaction with matter field, we obtain a fifth force as

$$F^i_{\phi} = -\underbrace{\left(\frac{1}{A}\frac{\partial A}{\partial \phi}\right)}_{\text{coupling const.}}\partial^i\phi \quad ; \quad A(\phi) = \text{conformal factor}$$

 \ast we can prove by using conformal transformation on geodesic equation.

Screening methods:

- range of interaction \rightarrow mass of scalar field (chameleon mechanism)
- modified coupling constant $\rightarrow A(\phi) \propto \exp(\phi^2)$ (ex: symmetron mechanism)

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism 00	Summary O
Introduction			

• profile of scalar field $\phi(r)$

linear model:
$$\Box \phi = 0 \rightarrow \phi(r) \propto \frac{1}{r}$$

 $\rightarrow F_{\phi}^{r} \propto \frac{1}{r^{2}}$ (unscreened)

Nonlinear models can provide a non-inverse r^2 fifth force which yield $F_\phi/F_N\ll 1$ at small r.

(ex: Vainshtein mechanism, kinetic screening, D-Blonic screening)

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism 00	Summary O
Motivation			

"Double screening" (P. Gartia et al., 2016)

We can have both Vainshtein and kinetic screening mechanisms in one model.

 \Rightarrow It is also possible in cubic DBI galileon with some signs flipped.

Research question

What about cosmological dynamics of the DBI galileon model?

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Outline			

2 Cosmological dynamics of DBI galileon

3 Screening mechanism

④ Summary

Cosmological dynamics of DBI galileon

Screening mechanism

Summary

Cosmological dynamics of DBI galileon

DBI galileon (DBI + cubic galileon)

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_{\rm PL}^2 R + a_2 \sqrt{1 + 2\lambda X} + a_3 \ln(1 + 2\lambda X) \Box \phi \right]$$
$$+ S_m (A^2(\phi) g_{\mu\nu}, \psi_m)$$

where

•
$$X = -(\nabla \phi)^2/2$$

•
$$\lambda < 0$$
 : DBI galileon $\Rightarrow \sqrt{1 + (\nabla \phi)^2}$

- $\lambda>0$: DBIonic galileon $\Rightarrow \sqrt{1-(\nabla\phi)^2}$ required for screening mechanism
- scalar field has conformal interaction with matter \Rightarrow fifth force

Cosmological dynamics of DBI galileon

Screening mechanism

Cosmological dynamics of DBI galileon

We use dynamical system approach to study cosmological dynamics.

Using flat FLRW metric, the Friedmann equation is

$$3M_{\rm PL}^2 H^2 = \left(-\frac{a_2}{\sqrt{1+\lambda\dot{\phi}^2}} - 6a_3\lambda\frac{H\dot{\phi}^3}{1+\lambda\dot{\phi}^2}\right) + \rho_m + \rho_r \,,$$

Defining dimensionless dynamical variables as

•
$$x_1 \equiv \frac{\dot{\phi}}{H_0 M_{\rm PL}} \propto$$
 kinetic energy of scalar field
• $x_2 \equiv \frac{H}{H_0} \propto$ Hubble parameter
• $x_3 \equiv \frac{\rho_r}{3H^2 M_{\rm PL}^2} \propto$ energy density of radiation

Cosmological dynamics of DBI galileon

Screening mechanism

Summary 0

Cosmological dynamics of DBI galileon

Differentiating the dynamical parameters we find autonomous equations

$$\begin{split} \frac{dx_1}{dN} &= -\frac{\left(\lambda x_1^2 + 1\right)}{\Delta x_2} \left\{ 2g \Big[3\lambda x_2 \left(x_1^3 - (\lambda x_1^2 + 1)x_2(x_3 - 1)\right) + \sqrt{\lambda x_1^2 + 1} \right] \\ &+ 3\lambda x_1^2 x_2^2(x_3 - 3) + 3x_1(x_1 + 2\lambda x_2)\sqrt{\lambda x_1^2 + 1} \right\}, \\ \frac{dx_2}{dN} &= \frac{1}{\Delta x_2} \left\{ gx_1^2 \left[3\lambda x_2 \left(x_1^3 - (\lambda x_1^2 + 1)x_2(x_3 - 1)\right) + \sqrt{\lambda x_1^2 + 1} \right] \\ &+ 3\lambda x_1 x_2^2 \left[-3x_1^3 + 2x_2(x_3 + 3) \right] - (\lambda x_1^2 + 1) \\ &+ x_2 \left[6x_1 - \lambda x_2 x_3 + 3\lambda(x_1^3 - x_2) \right] \sqrt{\lambda x_1^2 + 1} \right\}, \\ \frac{dx_3}{dN} &= -\frac{2x_3}{\Delta x_2^2} \left\{ gx_1^2 \left[3\lambda x_2 \left(x_1^3 - (\lambda x_1^2 + 1)x_2(x_3 - 1)\right) + \sqrt{\lambda x_1^2 + 1} \right] \\ &+ 3\lambda x_1 x_2^2 [-x_1^3 + 2x_2(x_3 - 1)] - (\lambda x_1^2 + 1) \\ &+ x_2 \left[6x_1 - \lambda x_2 x_3 + \lambda(3x_1^3 + x_2) \right] \sqrt{\lambda x_1^2 + 1} \right\}, \end{split}$$
where $\Delta &\equiv \lambda \left(3x_1(x_1^3 - 4x_2) + 2\sqrt{\lambda x_1^2 + 1} \right). \end{split}$

Fixed points: $dx_1/dN = dx_2/dN = dx_3/dN = 0$.

Cosmological dynamics of DBI galileon 0000000

Screening mechanism

Cosmological dynamics of DBI galileon

Since $x_2 \propto H$ and $dx_2/dN = 0$, these fixed points give de Sitter spacetime.

$\lambda = -1$	<i>x</i> ₁	x_2	x_3
(a)	0	$\frac{1}{\sqrt{3}}$	0
(b)	$\frac{1}{3}\sqrt{\frac{1}{2}\left(\sqrt{37}-1\right)}$	$\frac{1}{3}\sqrt{\frac{1}{2}\left(\sqrt{37}-1\right)}$	0
$\lambda = +1$	x1	x_2	x_3
(c)	0	$\pm \frac{i}{\sqrt{3}}$	0
(d)	$\pm \frac{i}{3}\sqrt{\frac{1}{2}\left(\sqrt{37}-1\right)}$	$\mp \frac{i}{3}\sqrt{\frac{1}{2}\left(\sqrt{37}-1\right)}$	0

- DBIonic galileon ($\lambda = +1$) does not provide real fixed points.
- There exist two de Sitter solutions in DBI galileon ($\lambda = -1$).

... Only DBI galileon can provide the cosmological evolution.

Introduction and Motivation	Cosmological dynamics of DBI galileon 0000●00	Screening mechanism	Summary O
Stability			

Considering eigenvalues of each fixed point,

 $\delta x \propto e^{\mu N} \,,$

For negative eigenvalues μ , at large N, $\delta x \to 0$ (stable).

Eigenvalues:

- FP (a): -4, -3, -3 (stable)
- FP (b): -4, -3, -3 (stable)

For nonzero conformal coupling, we find another fixed point. However, one of the eigenvalues is always positive (unstable).

Introduction and Motivation	Cosmological dynamics of DBI galileon 00000●0	Screening mechanism	Summary O
Numerical results			

- The fixed point (a) gives $x_1 = 0$, which is similar to the cosmological constant.
- For the fixed point (b), the kinetic term still exists.

Both fixed points give cosmological evolution successfully.

Cosmological dynamics of DBI galileon 000000

Screening mechanism Summar 00 0

Ghost and Laplacian instability

To avoid the ghost and Laplacian instability, we require

$$S_{s}^{(2)} = \int d^{4}x a^{3} Q_{s} \left[\dot{\zeta}^{2} - \frac{c_{s}^{2}}{a^{2}} (\partial \zeta)^{2} \right] \quad \Rightarrow \quad Q_{s} > 0, \quad c_{s}^{2} > 0$$

Using numerical results we find

- both fixed points have $c_s^2 > 0$.
- the fixed point (b) has Q_s < 0 at late-time, thus only the fixed point (a) can avoid the ghost instability.

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Outline			

2 Cosmological dynamics of DBI galileon

3 Screening mechanism

4 Summary

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism ●0	Summary O
Screening mechai	nism		

The fifth force from conformal interaction is given by

$$F_{\phi}^{r} \equiv -\frac{A_{,\phi}}{A} \frac{d\phi}{dr} = -\frac{g}{M_{\rm PL}} \frac{d\phi}{dr}$$
. g : conformal coupling

Screening mecha	nicm		
Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism ●○	Summary O

The fifth force from conformal interaction is given by

$$F_{\phi}^{r} \equiv -\frac{A_{,\phi}}{A} \frac{d\phi}{dr} = -\frac{g}{M_{\rm PL}} \frac{d\phi}{dr}$$
. g : conformal coupling

From equation of motion,

$$\nabla_{\mu} \left(\frac{1}{\sqrt{1+2\lambda X}} \nabla^{\mu} \phi \right) + \frac{1}{\Lambda^{3}} \nabla_{\mu} \left(\frac{1}{1+2\lambda X} \left(\nabla^{\mu} \phi \Box \phi - \nabla_{\nu} \phi \nabla^{\mu} \nabla^{\nu} \phi \right) \right) = \frac{g}{M_{\rm PL}} \rho_{m} ,$$

Using flat static spherically symmetric metric, we find

$$\phi'(r) = \sqrt{\frac{2\tilde{A}^2}{\frac{4\tilde{A}r}{\Lambda^3} + r^4 + 2\tilde{A}^2\lambda + \sqrt{r^8 + 8\tilde{A}r^5/\Lambda^3}}, \qquad \tilde{A} \equiv \frac{gM}{4\pi M_{\rm PL}}$$

In the limit $r \to 0$, $\phi'(r) \simeq \sqrt{\frac{1}{\lambda}} \Rightarrow \therefore \lambda$ must be positive.

... Only DBIonic galileon has screening mechanism.

Cosmological dynamics of DBI galileon

Screening mechanism Summary ○● ○

Screening mechanism

Defining $F_{\text{unscreened}} \equiv 2g^2 F_N$,

- at large distances \Rightarrow Vainshtein mechanism
- at short distances \Rightarrow DBIonic (kinetic) screening.

... DBIonic galileon possesses double (two) screening mechanisms.

Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary O
Outline			

2 Cosmological dynamics of DBI galileon

3 Screening mechanism

<u> </u>			
			•
Introduction and Motivation	Cosmological dynamics of DBI galileon	Screening mechanism	Summary

Summary

We study cosmological dynamics and screening mechanism of the DBI galileon (DBI + cubic galileon) model

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_{\rm PL}^2 R + a_2 \sqrt{1 + 2\lambda X} + a_3 \ln(1 + 2\lambda X) \Box \phi \right] + S_m(A^2(\phi) g_{\mu\nu}, \psi_m)$$

- only DBI galileon ($\lambda < 0$) can provide cosmological evolution successfully.
- only DBIonic galileon $(\lambda > 0)$ has screening mechanisms (Vainshtein and DBIonic).

We are still looking for a model which can unifies both situations.

Thank you very much for your attention!