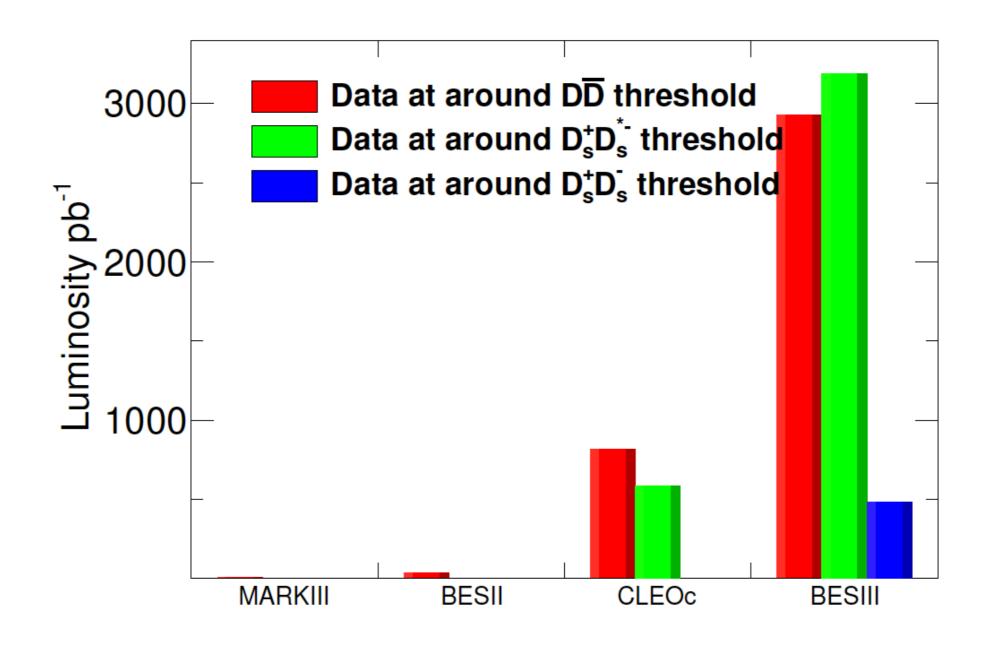
Charm Physics at BESIII

Bai-Cian Ke Shanxi Normal University

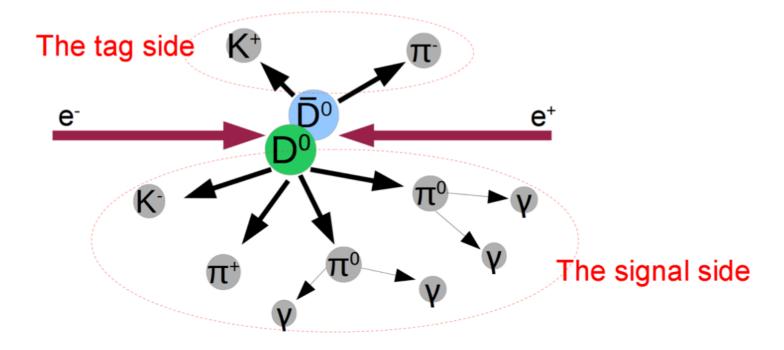
Outline

- Introduction
 - D⁰, D⁺, and D_s dataset
 - DTag and branching fraction
- Measurement of D (semi)leptonic decays
- Measurement of D hadronic decays
- Amplitude analysis
 - KK/ $\pi\pi$ ev, K- π + π + π -, K_S π + π + π -, K- π + π 0 π 0, π + π 0 η etc.
- Summary

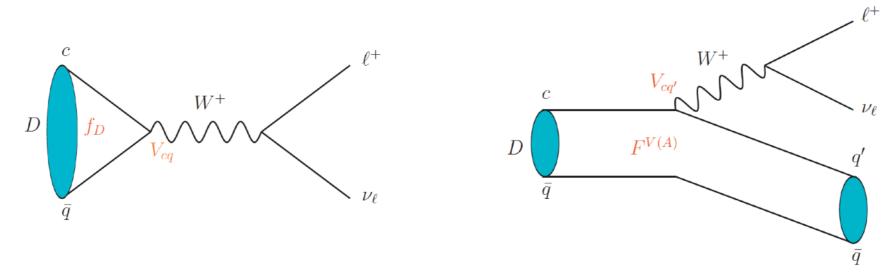

BESIII Data Taken near DDbar Threshold

- BEPCII collider: $e^+e^- \rightarrow \psi(3770) \rightarrow DD^{bar}$
- 2.9 fb⁻¹ dataset at $\psi(3770)$ resonance (~3.6x larger than CLEO's)

```
M_{D0}= 1864.84 MeV M_{D+}= 1869.62 MeV 2M_{D0}= 3729.68 MeV 2M_{D+}= 3739.24 MeV
```


- 3.19 fb⁻¹ dataset at E_{cm} 4.178GeV (~5.3x larger than CLEO's)
 - D_s are produced mostly via e+e-→D_sD_s*
 - more energy points are ready (4.190, 4.200, 4.210, 4.220.4.230 GeV. Total are about 0.8x of 4.178 data.)
- Advantages of DDbar pair production near threshold
 - Clean; not enough energy for even one additional pion
 - Tagging reduces background
 - Double tag technique can provide access to absolute BFs
 - Many systematic uncertainties cancel with tagging technique
 - With fully reconstructed tracks, neutrino information can be accessed via missing energy and momentum

Experiments at Charm factories

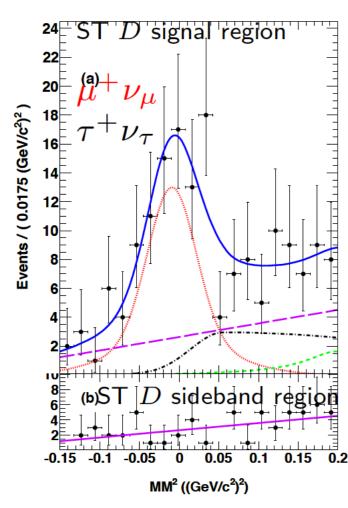


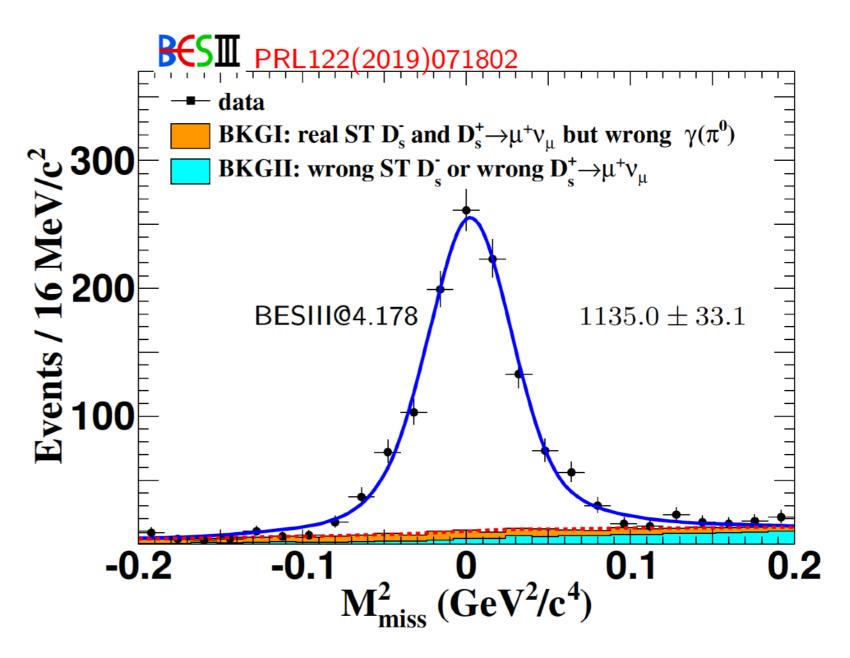
DTag Technique

- There are two types of samples used in the Dtag technique: single tag (ST) and double tag (DT).
- Single tag: only one D meson is reconstructed through a chosen hadronic decay.
- Double tag: both D and D are reconstructed,
- the D reconstructed through the studied hadronic decay is called "the signal side".
- the \overline{D} reconstructed through well-known and clean hadronic decay modes is called "the tag side".
- (Charge-conjugate states are implied throughout this talk.)

Measurements of D (semi)leptonic decays

(semi)leptonic decays provide a clearer view than hadronic decays


- Test the unitarity of quark mixing matrix and search for new physics.
- Test the theoretical calculation on decay constants and form factors, especially LQCD.
- Test the lepton avor universality.
- Help to understand the internal structure of light scalar mesons.



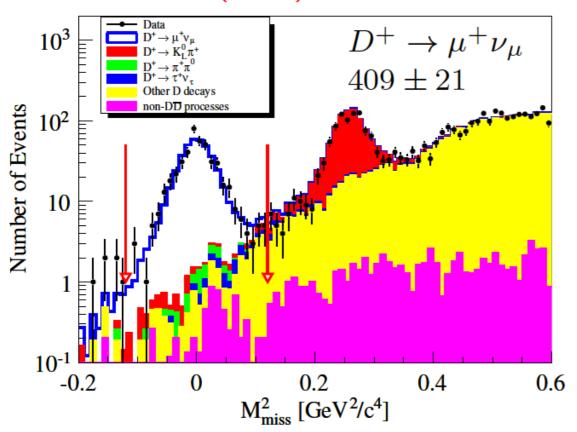
D_s pure leptonic decays

BESII PRD94(2016)072004

BESIII@4.009

$$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (5.17 \pm 0.75 \pm 0.21) \times 10^{-3}$$

 $\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (3.28 \pm 1.83 \pm 0.37)\%$
 $f_{D_s^+} |V_{cs}| = 239 \pm 17 \pm 5$ MeV with $\mu^+ \nu_\mu$
 $f_{D_s^+} |V_{cs}| = 193 \pm 54 \pm 11$ MeV with $\tau^+ \nu_\tau$


$$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (5.49 \pm 0.16 \pm 0.15) \times 10^{-3}$$

$$f_{D_s^+} |V_{cs}| = 246.2 \pm 3.6 \pm 3.5$$

$$R_{D_s^+} = \frac{\Gamma(D_s^+ \to \tau^+ \nu_\tau)}{\Gamma(D_s^+ \to \mu^+ \nu_\mu)} = 10.19 \pm 0.52$$

D+ pure leptonic decays

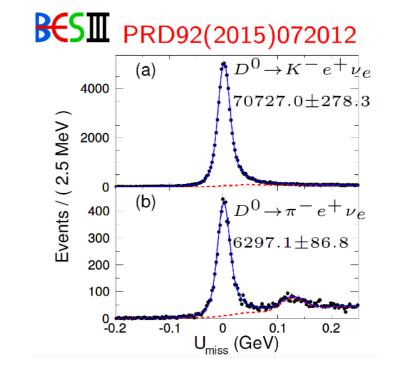
B€S PRD89(2014)051104

$$\mathcal{B}(D^+ \to \mu^+ \nu_\mu) = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$$

 $f_{D^+} |V_{cd}| = 46.7 \pm 1.2 \pm 0.4 \text{ MeV}$

$$\mathcal{B}(D^+ \to \tau^+ \nu_\tau) = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$$

 $f_{D^+} |V_{cd}| = 50.4 \pm 5.1 \pm 2.5 \text{ MeV}$

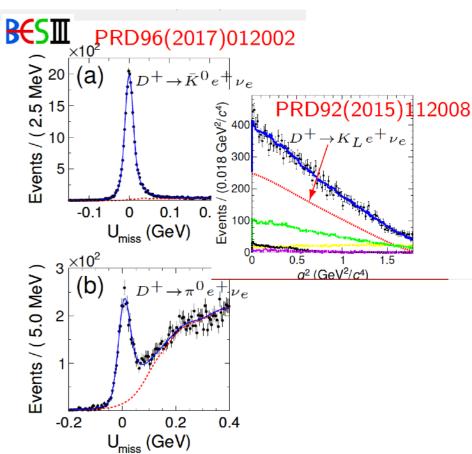

First observation with 5.1σ signal significance.

$$R_{D^+} = \frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 3.21 \pm 0.64 \pm 0.43$$
 SM prediction 2.67 ± 0.01 .

D_(s) semileptonic decays

$$B(D^0 \to K^- e^+ \nu_e) = (3.505 \pm 0.014 \pm 0.033) \%$$

 $f_+^{D \to K}(0) |V_{cs}| = 0.7172 \pm 0.0025 \pm 0.0035$

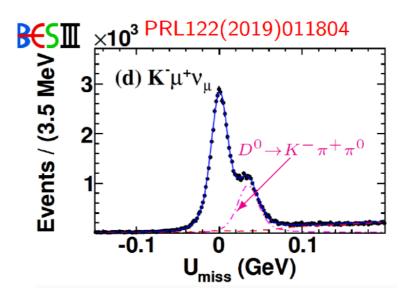

$$B(D^0 \to \pi^- e^+ \nu_e) = (0.295 \pm 0.004 \pm 0.003) \%$$

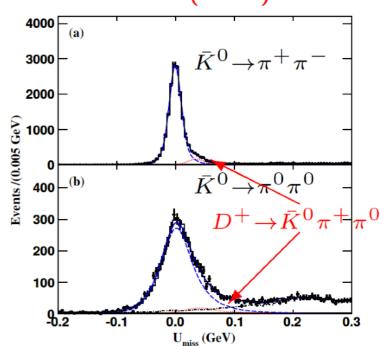
 $f_+^{D \to \pi}(0) |V_{cd}| = 0.1435 \pm 0.0018 \pm 0.0009$

$$B(D^+ \to \bar{K}^0 e^+ \nu_e)$$
(via K_S^0) = $(8.60 \pm 0.06 \pm 0.15) \%$
 $f_+^{D \to K}(0) |V_{cs}| = 0.7053 \pm 0.0040 \pm 0.0112$

$$B(D^+ \to \bar{\pi}^0 e^+ \nu_e) = (0.363 \pm 0.008 \pm 0.005) \%$$

 $f_+^{D \to \pi}(0) |V_{cd}| = 0.1400 \pm 0.0026 \pm 0.0007$

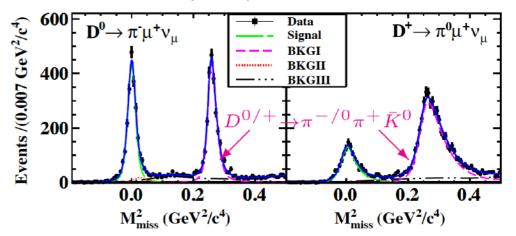

$$B(D^+ \to \bar{K}^0 e^+ \nu_e)$$
(via K_L^0) = $(8.962 \pm 0.054 \pm 0.206) \%$
 $f_+^{D \to K}(0) |V_{cs}| = 0.728 \pm 0.006 \pm 0.011$


D_(s) semileptonic decays

$$B(D^0 \to K^- \mu^+ \nu_\mu) = (3.431 \pm 0.019 \pm 0.035) \%$$

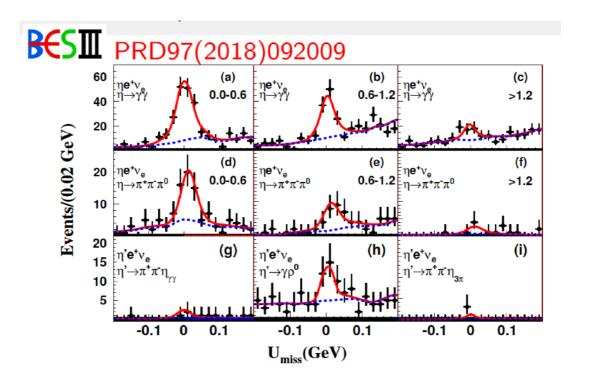
 $f_+^{D \to K}(0) |V_{cs}| = 0.7133 \pm 0.0038 \pm 0.0030$

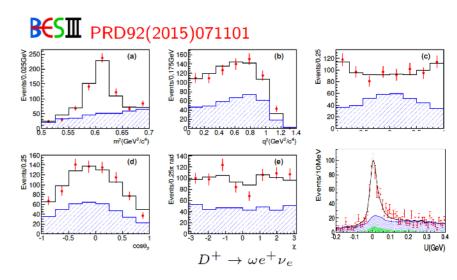
$$B(D^+ \to K^0 \mu^+ \nu_\mu) = (8.72 \pm 0.07 \pm 0.18) \%$$


B€SI EPJC76(2016)369

$$B(D^0 \to \pi^- \mu^+ \nu_\mu) = (0.272 \pm 0.008 \pm 0.006) \%$$

$$B(D^+ \to \pi^0 \mu^+ \nu_\mu) = (0.350 \pm 0.011 \pm 0.010) \%$$


B€S PRL121(2018)171803


D_(s) semileptonic decays

$$B(D^+ \to \eta e^+ \nu_e) = (10.74 \pm 0.81 \pm 0.51) \times 10^{-4}$$

$$B(D^+ \to \eta' e^+ \nu_e) = (1.91 \pm 0.51 \pm 0.13) \times 10^{-4}$$

 $B(D^+ \to \omega e^+ \nu_e) = (1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$

Measurements of D hadronic decays

Observation of the Singly Cabibbo-Suppressed Decay $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$

Chose six (five) decay modes for $D^{+(0)}$.

In order to have a better solution for $D^{+(0)} \to \pi^+\pi^-\pi^0\pi^{+(0)}$ background, DT samples $D^{+(0)} \to \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes are reconstructed first. Then fits to $\pi^+\pi^-\pi^0$ mass are performed.

Note that we are searching for $\omega \to \pi^+\pi^-\pi^0$.

$$\mathcal{B}_{\text{sig}} = \frac{\sum_{\alpha} N_{\text{sig}}^{\text{obs},\alpha}}{\sum_{\alpha} N_{\text{tag}}^{\text{obs},\alpha} \epsilon_{\text{tag,sig}}^{\alpha} / \epsilon_{\text{tag}}^{\alpha}}$$

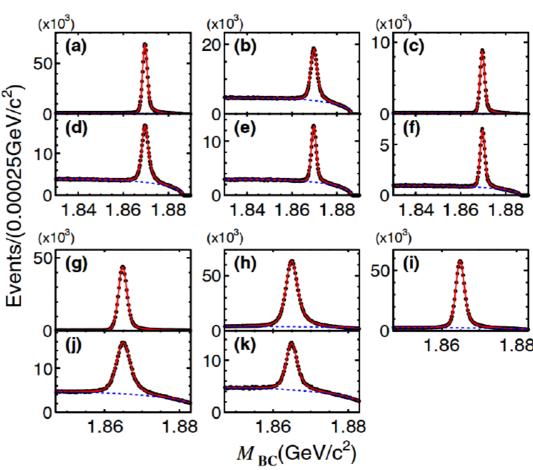
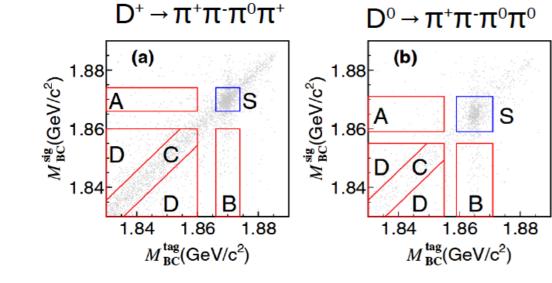



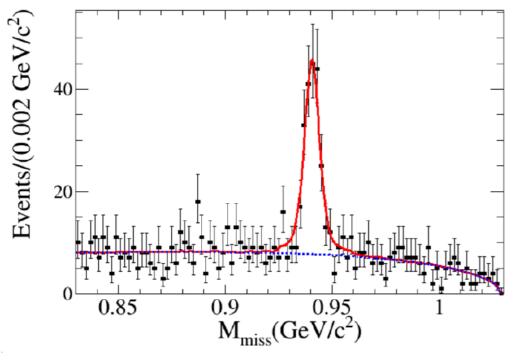
FIG. 1. $M_{\rm BC}$ distributions of ST samples for different tag modes. The first two rows show charged D decays: (a) $K^+\pi^-\pi^-$, (b) $K^+\pi^-\pi^-\pi^0$, (c) $K_S^0\pi^-$, (d) $K_S^0\pi^-\pi^0$, (e) $K_S^0\pi^+\pi^-\pi^-$, (f) $K^+K^-\pi^-$, the latter two rows show neutral D decays: (g) $K^+\pi^-$, (h) $K^+\pi^-\pi^0$, (i) $K^+\pi^-\pi^+\pi^-$, (j) $K^+\pi^-\pi^0\pi^0$, (k) $K^+\pi^-\pi^+\pi^-\pi^0$. Data are shown as points, the (red) solid lines are the total fits and the (blue) dashed lines are the background shapes. D and \bar{D} candidates are combined.

DT $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes

Fits to $M3\pi$ distributions of signal and sideband regions to obtain the signal and peaking background yields, respectively.

Events counts in sidebands are projected into the signal region with scale factors.

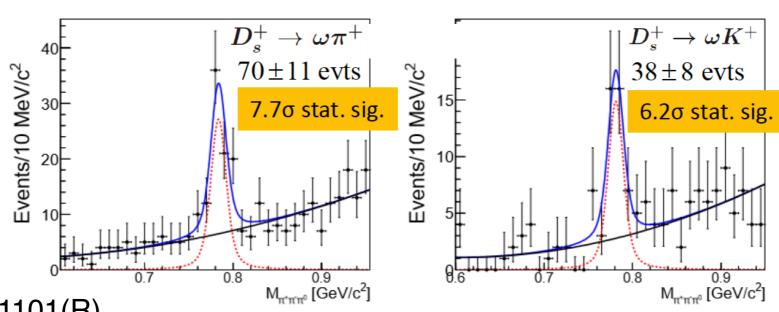
ModeH	$N_{\omega(\eta)}$	$N_{\omega(\eta)}^{ m bkg}$	$N_{ m sig}^{ m obs}$
$D^+ \to \omega \pi^+$	100 ± 16	21 ± 4	79 ± 16
$D^0 o \omega \pi^0$	50 ± 12	5 ± 5	45 ± 13
$D^+ o \eta \pi^+$	264 ± 17	6 ± 2	258 ± 18
$D^0 o \eta \pi^0$	78 ± 10	3 ± 2	75 ± 10


Events/(0.005GeV/c²)			$Events/(0.01 GeV/c^2)$	40 30 20 10 0.5	(b η 0.6	0.7	0.8 V/c²)	0.9
	$M_{3\pi}(\text{GeV/c})$	e ⁻)			M	_{3π} (Ge	V/c²)	

Mode	This work	Previous measurements
$D^+ \rightarrow \omega \pi^+$	$(2.79\pm0.57\pm0.16)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \rightarrow \omega \pi^0$	$(1.17\pm0.34\pm0.07)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07\pm0.22\pm0.13)\times10^{-3}$	$(3.53\pm0.21)\times10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65\pm0.09\pm0.04)\times10^{-3}$	$(0.68\pm0.07)\times10^{-3}$

Red line: total fit
Blue line: background
Hatched histogram:
peaking background
From sidebands

PRL **116**, 082001 (2016)

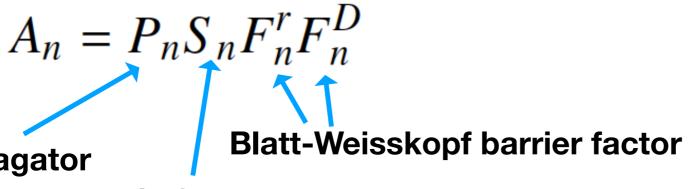

Measurements of pure W-annihilation decays in Ds+

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10) \times 10^{-3}$$

Consistent with long-distance expectation

Phys. Rev. D 99, 031101(R)

Phys. Rev. D **99**, 091101(R)


Consistent with CLEO's measurement, but more precise.

$$\mathcal{B}(D_s^+ \to \omega \pi^+) = (1.85 \pm 0.30_{stat.} \pm 0.19_{sys.}) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to \omega K^+) = (1.13 \pm 0.24_{stat.} \pm 0.14_{sys.}) \times 10^{-3}$$
 First observation!

This measurement of implies the ρ – ω mixing is negligible.

Amplitude Analysis of $D_{(s)}$ three- and four-body decays

The amplitude of the nth intermediate state

spin factor

The signal probability density function (PDF)

$$f_S(p_j) = \frac{\epsilon(p_j) \left| M(p_j) \right|^2 R_3(p_j)}{\int \epsilon(p_j) \left| M(p_j) \right|^2 R_3(p_j) dp_j}$$

The total amplitude M

$$\sum c_n A_n$$

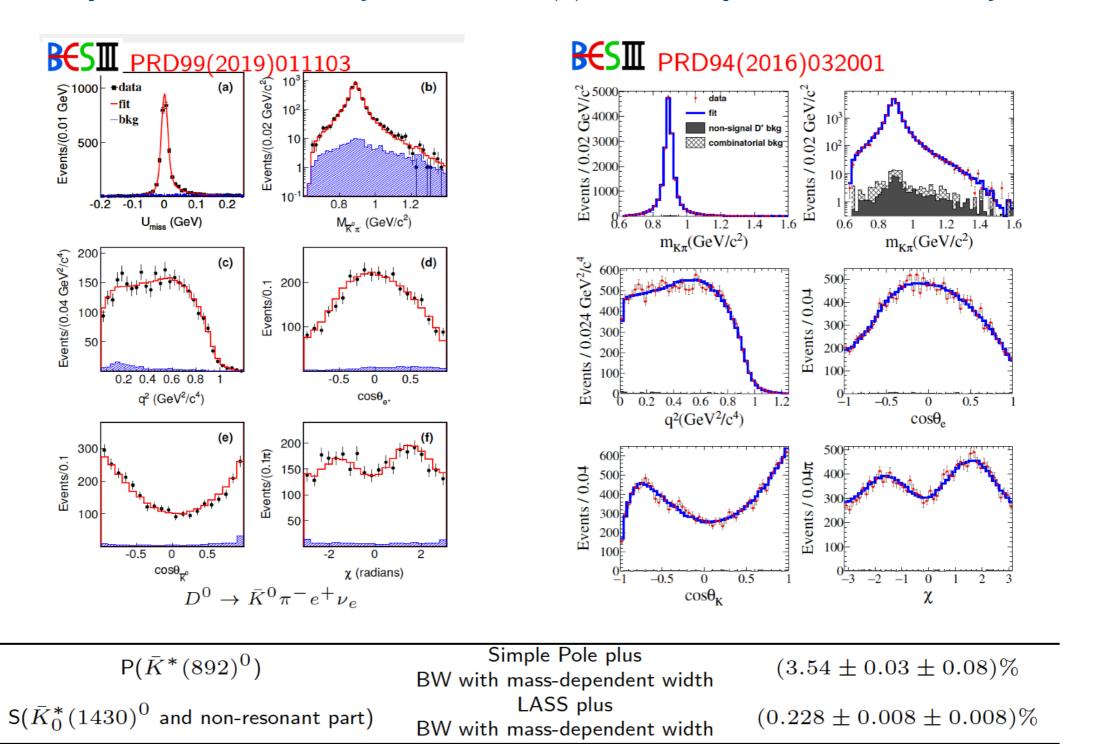
complex coefficient (we are going to fit)

Likelihood

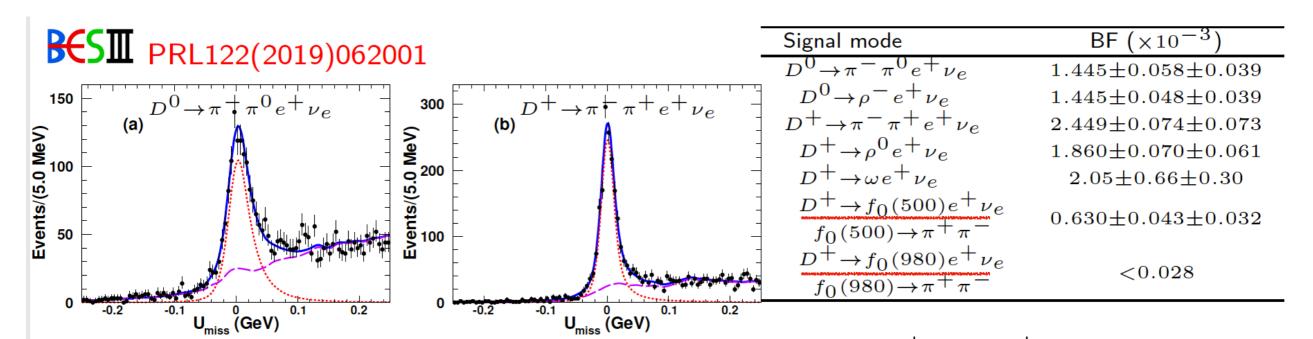
$$\ln L = \sum_{k}^{N_{data}} \ln f_S(p_j^k)$$

The normalization is determined by MC integration

$$\int \epsilon(p_j) |M(p_j)|^2 R_3(p_j) dp_j \approx \frac{1}{N_{MC}} \sum_{k_{MC}}^{N_{MC}} \frac{|M(p_j^{k_{MC}})|^2}{|M^{gen}(p_j^{k_{MC}})|^2}$$

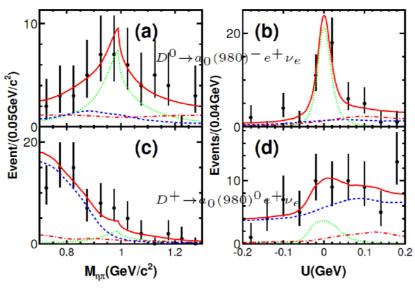

Propagator

K*(892), K*(1680): RBW
$$P = \frac{1}{(m_0^2 - s_a) - im_0 \Gamma(m)}$$


$$P = \frac{1}{(m_0^2 - s_a) - im_0 \Gamma(m)}$$

$$(m_0^{-5a}) \quad m_0^{-1}(m)$$
 Phys. Rev. D 95, no. 3, 032002 (2017) a₀: two-channel-coupled Flatte formula
$$1/[(m_0^2-s_a)-i(g_{\eta\pi}^2\rho_{\eta\pi}+g_{K\bar{K}}^2\rho_{K\bar{K}})]$$

Amplitude Analysis of D_(s) smileptonic decays



Amplitude Analysis of D_(s) smileptonic decays

21202

PRL121(2018)081802

 $D_s^+ \to \pi \pi e^+ \nu_e$ is under study

$$D_s^+ \to a_0 (980)^0 e^+ \nu_e$$

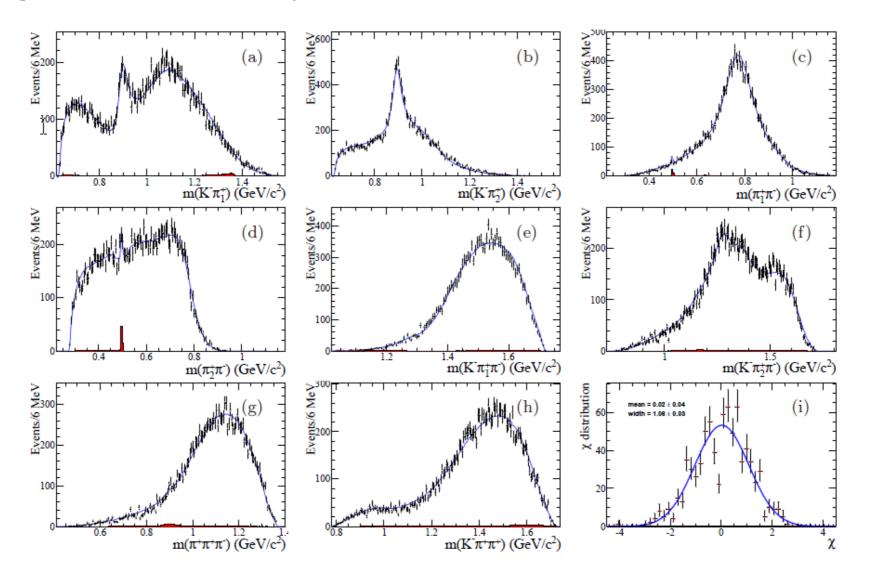
is under study

Decay	BF $(\times 10^{-4})$	Significance
$D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta \pi^-$	$1.33^{+0.33}_{-0.29} \pm 0.09$	6.4σ
$D^+ \to a_0(980)^0 e^+ \nu_e, a_0(980)^0 \to \eta \pi^0$	$1.66^{+0.81}_{-0.66} \pm 0.11$ < 3.0 (90% C.L.)	2.9σ

Amplitude Analysis of Κπππ

•There are seven D \rightarrow K $\pi\pi\pi$ modes:

```
D^0 \rightarrow K^-\pi^+\pi^+\pi^- (published on PRD) D^0 \rightarrow K^-\pi^+\pi^0\pi^0 (published on PRD) D^0 \rightarrow K_S\pi^0\pi^0\pi^0 D^0 \rightarrow K_S\pi^+\pi^-\pi^0 (on-going) D^+ \rightarrow K^-\pi^+\pi^+\pi^0 (on-going) D^+ \rightarrow K_S\pi^+\pi^0\pi^0 (on-going) D^+ \rightarrow K_S\pi^+\pi^0\pi^0 (on-going) D^+ \rightarrow K_S\pi^+\pi^+\pi^- (published on PRD)
```


- Four-body decays are in five-dimensions
- We have
 - Partial Wave Analysis Tools based on CPU and GPU kernel
 - Great Electro-Magnetic Calorimeter (EMC) with CsI
 - \rightarrow superior resolution and efficiency of π^0
 - Largest dataset at ψ(3770) resonance
 - → small statistical errors and clean background

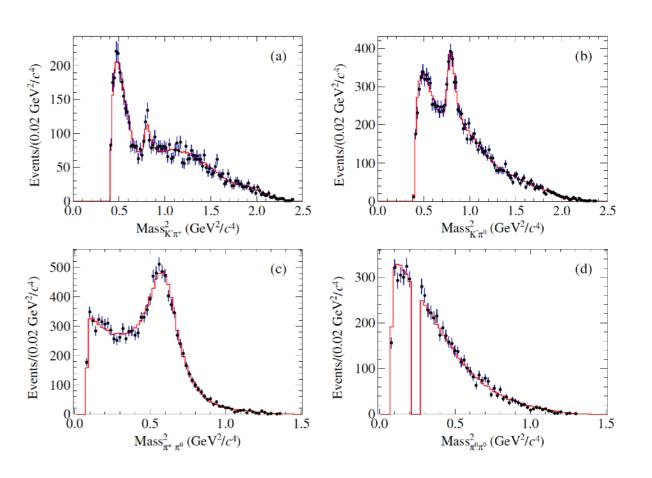
Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Double tag $D^0 \rightarrow K^-\pi^+\pi^+\pi^- \text{ vs. } D^0 \rightarrow K^+\pi^-$

Amplitude	ϕ_i	Fit fraction (%)
$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] o \bar K^* ho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), \ a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar K^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \to (K^- \pi^+)_{\rm S} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \to (K^- \rho^0)_{\rm V} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 \to \bar{K}^{*0}(\pi^+\pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \to ((K^-\pi^+)_{\rm S}\pi^-)_{\rm A}\pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm S}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^{0}[S] \to (K^{-}\pi^{+})_{V}(\pi^{+}\pi^{-})_{V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

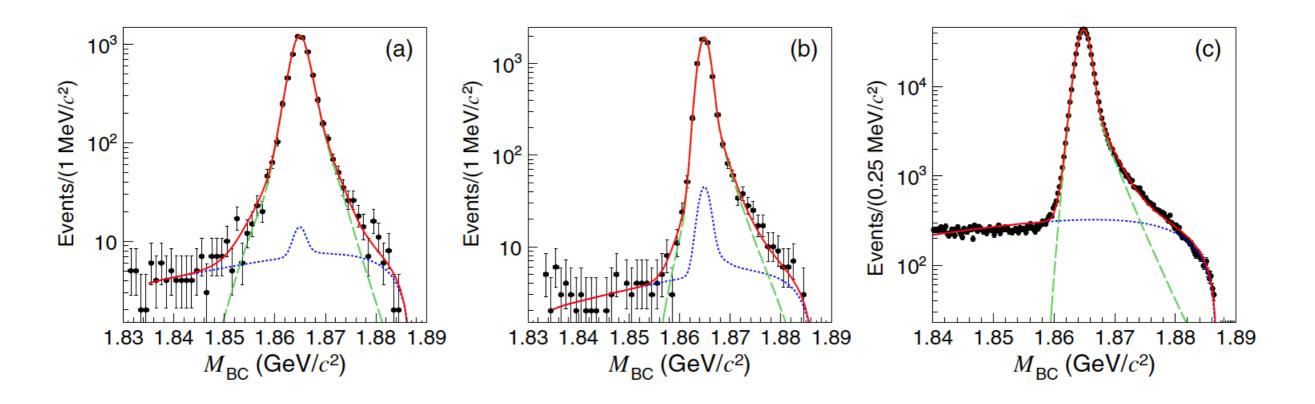
Component	Fit fraction (%)
$D^0 o ar K^{*0} ho^0$	$12.3\pm0.4\pm0.5$
$D^0 o K^- a_1^+ (1260) (ho^0 \pi^+)$	$54.6 \pm 2.8 \pm 3.7$
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.8\pm0.2\pm0.2$
$D^0 o K_1^-(1270)(K^-\rho^0)\pi^+$	$3.4\pm0.3\pm0.2$
$D^0 o K^-\pi^+ ho^0$	$8.4\pm1.1\pm2.2$
$D^0 ightarrow ar K^{*0} \pi^+ \pi^-$	$7.0 \pm 0.4 \pm 0.3$
$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$	$21.9 \pm 0.6 \pm 0.6$


Published in PRD 95, 072010

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Double tag: $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (signal) vs. $\overline{D}{}^0 \rightarrow K^+\pi^-$ (tag) The number of event selected is 5950 with a purity of ~99%

The data can be described with 26 amplitudes:


Amplitude mode	FF (%)	Phase (ϕ)
D o SS		.,,
$D \to (K^- \pi^+)_{S\text{-wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$
$D \rightarrow (K^-\pi^0)_{S\text{-wave}}(\pi^+\pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$D \to AP, A \to VP$		
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^-\pi^+, K^{*-}\pi^0[S]$	$0.15 \pm 0.09 \pm 0.18$	$1.84 \pm 0.34 \pm 0.43$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D \to K_1(1270)^0 \pi^0, K^- \rho^+ [S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D o (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D \to (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$D \to AP, A \to SP$		
$D o ((K^-\pi^+)_{S ext{-wave}}\pi^0)_A\pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
D o VS		
$D o (K^-\pi^0)_{S ext{-wave}} ho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$
$D \to K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D o K^{*0}(\pi^0\pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$D \to VP, V \to VP$		
$D ightarrow (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \to VV$		
$D[S] o K^{*-} ho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] o K^{*-} ho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] o K^{*-} ho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$
$D[P] ightarrow (K^-\pi^0)_V ho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] ightarrow (K^-\pi^0)_V ho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] o K^{*-}(\pi^+\pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$\overline{D o TS}$		
$D \to (K^- \pi^+)_{S\text{-wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$D \to (K^- \pi^0)_{S\text{-wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

Branching Fraction Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

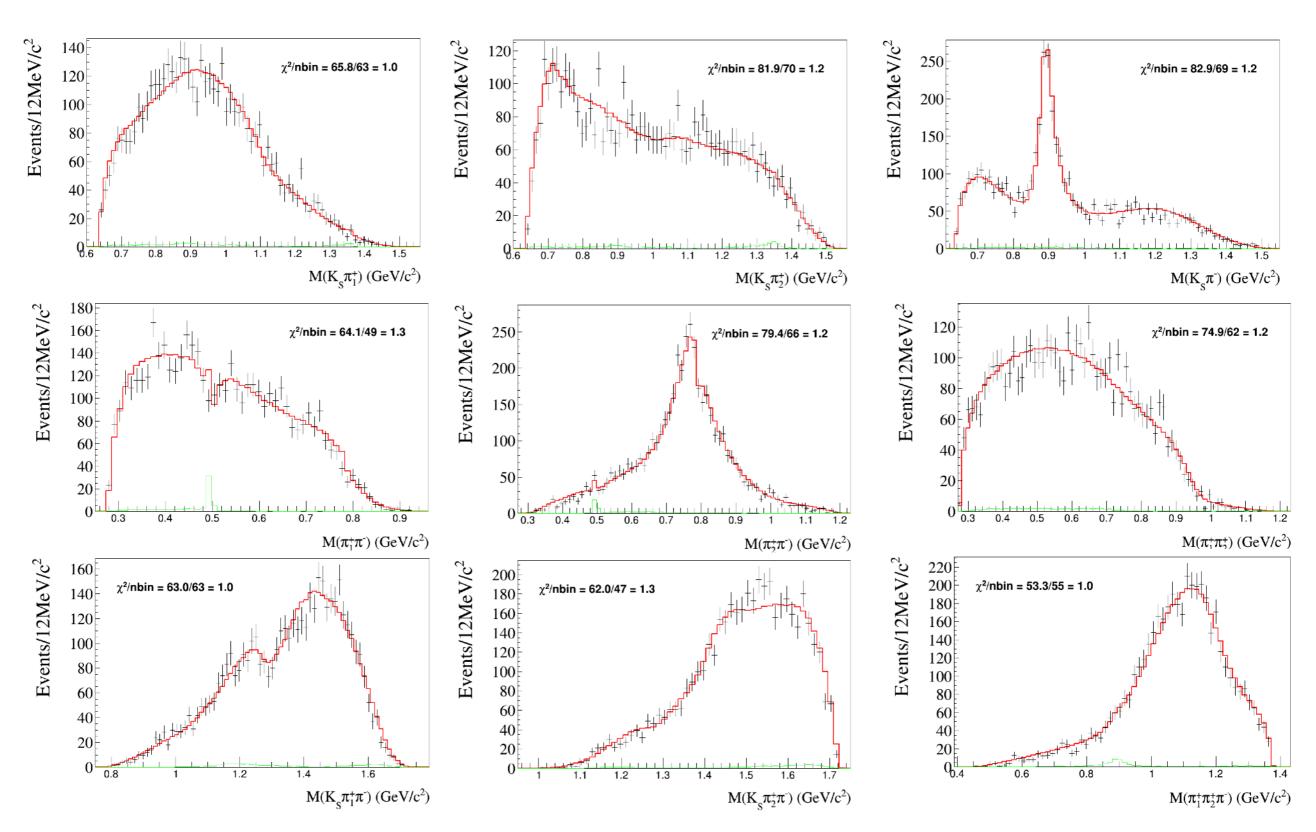
Double tag(DT) $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ vs. $\overline{D}{}^0 \rightarrow K^+\pi^-$ Single tag(ST) $\overline{D}{}^0 \rightarrow K^+\pi^-$

$$\mathcal{B}_{ ext{sig}} = rac{N_{ ext{tag,sig}}^{ ext{DT}}}{N_{ ext{tag}}^{ ext{ST}}} rac{arepsilon_{ ext{tag,sig}}}{arepsilon_{ ext{tag,sig}}}$$

The amplitude analysis result is used to determine the detection efficiency, where the DT efficiency is 8.39%

The branching fraction is determined to be

$$(8.86 \pm 0.13(\text{stat}) \pm 0.19(\text{syst}))\%$$

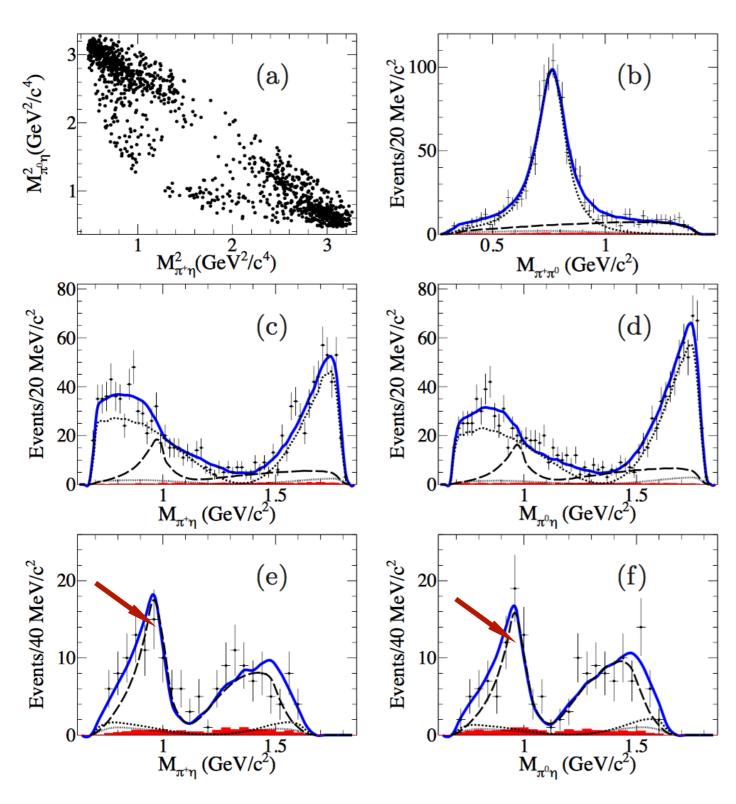

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Double tag $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^- vs. D^- \rightarrow K^+ \pi^- \pi^-$ The number of event selected is 4559 with a purity of ~99%

The data can be described with 12 amplitudes:

Amplitude	ϕ	fit fraction	
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$	
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$	
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$	
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$	
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K_S^0 \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$	
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K_S^0 \rho^0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$	
$D^+ \to (K_S^0 \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$	
$D^+ \to K_S^0(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$	
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$-4.321 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$	
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$	
$D^+ \to (K_S^0(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$	
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$	

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$


Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

The preliminary results of branching fractions for different components:

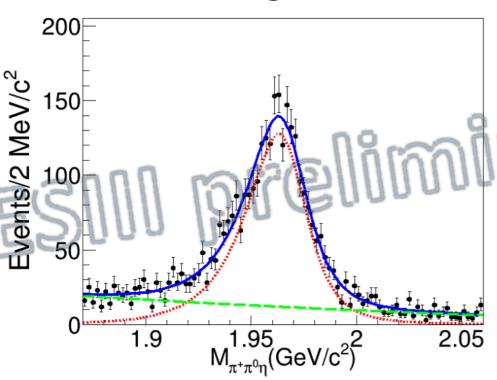
Component	Branching fraction (%)
$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+)$	$1.684 \pm 0.059 \pm 0.131 \pm 0.062$
$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.149 \pm 0.018 \pm 0.021 \pm 0.006$
$D^+ \to \tilde{K}_1(1400)^0 (K^{*-}\pi^+)\pi^+$	$1.105 \pm 0.045 \pm 0.048 \pm 0.041$
$D^+ \to \bar{K}_1(1270)^0 (K_S^0 \rho^0) \pi^+$	$0.107 \pm 0.012 \pm 0.006 \pm 0.004$
$D^+ \to \bar{K}(1460)^0 (K_S^0 \rho^0) \pi^+$	$0.042 \pm 0.012 \pm 0.009 \pm 0.002$
$D^+ \to K_S^0 \pi^+ \tilde{\rho}^0$	$0.131 \pm 0.015 \pm 0.015 \pm 0.005$
$D^{+} \to K^{*} \pi^{+} \pi^{+}$	$0.413 \pm 0.036 \pm 0.059 \pm 0.015$
$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$	$0.220 \pm 0.015 \pm 0.024 \pm 0.008$
	<u>†</u> † †
	stat. uncertainty from FF
	sys. uncertainty from FF
	uncertainties related to BF($D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$) in PDG

The measurements of the decays with K1(1270) and K1(1400) involved provide some experimental information in understanding the mixture of the two excited Kaons.

Amplitude Analysis of $D_S^+ \rightarrow \pi^+ \pi^0 \eta$ Observation of $D_{S^+} \rightarrow a^0 (980)^+ \pi^0$

Dots with error bar: data

Solid line: total fit


Dashed line: rho+ eta

Lond-dashed line: $a0(980)\pi$

The phase difference between $a_0(980)^0\pi^+$ and $a_0(980)^+\pi^0$ is found to agree with 180°

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$

Fit to signal mode

Total Tag yield: 255895 ± 1358 .

DT yield: **26**26 \pm **77**.

Efficiency is determined with the amplitude analysis result.

- Dots with error bars: data.
- Total fit.
- Signal: MC shape convoluted with a Gaussian.
- Background: second-order Chebychev.

$$BF(D_s^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28_{stat.} \pm 0.41_{sys.})\%$$

Branching fraction (%)
$$\mathcal{B}(D_s^+ \to \rho^+ \eta) = 7.44 \pm 0.48_{stat.} \pm 0.44_{sys.}$$

$$\mathcal{B}(D_s^+ \to a_0(980)\pi)^* = 2.20 \pm 0.22_{stat.} \pm 0.34_{sys.}$$

$$\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0)^* = 1.46 \pm 0.15_{stat.} \pm 0.22_{sys.}$$

$$\mathcal{B}(D_s^+ \to a_0(980)^0 \pi^+)^* = 1.46 \pm 0.15_{stat.} \pm 0.22_{sys.}$$

BF(sub-mode n) = $\mathcal{B}(D_s^+ \to \pi^+\pi^0\eta)FF(n)$

First observation

The measured $\mathcal{B}(D_{S^+} \to a^0(980)^+\pi^0)$ is larger than other measured pure W-annihilation decays ($D_{S^+} \to pn$, $D_{S^+} \to w\pi^+$) by one order.

Phys. Rev. Lett. **123**, 112001 (2019)

Summary

- DTag and DDbar threshold data allows us to perform inclusive and exclusive branching fraction measurement
- Double tag provides clean samples for amplitude analysis
- Many D⁰, D⁺, and D_s studies have been published, including $D^+ \to \tau \nu_{\tau}$
- A series measurements of scalar meson could provide complete information for theoretical approaches to judgment of quark models of light scalar mesons
- Excellent D_s studies are published based on our 3.19 fb⁻¹ data at E_{cm} = 4.178 GeV (and at 4.190-4.230 GeV)
 - "Many" D_s amplitude analyses of three- and four-body (semi)leptonic/ hadronic decays are expected to be published in the next year.