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D'ou venons-nous? Que sommes-nous?
Ou allons-nous?

i.e., at the most fundamental level [Paul Gauguin]

o How did the Universe begin?
e What is the Universe made of?

e What is the fate of the Universe?
The goal of this research is to answer these questions
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How did the Universe begin?
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New Physics beyond the Standard Model

Discovery of the 125 GeV Higgs boson i at the CERN LHC

e Spontaneous electroweak symmetry breaking established
e Information on the Higgs sector imperfect

Phenomena beyond the Standard Model
e Baryon asymmetry of the Universe e Neutrino oscillations

e EXxistence of dark matter e Cosmic inflation

i : )
What is the Universe made of” Standard Model
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Our Universe (in mathematical language)
= Standard Model x General Relativity + New Physics

’ he Lagrangian of the
Universe encodes the
fate of the Universe
(c.f. protein structure
encoded by DNA)

' o The goal of this research
. Is to reveal unknown
terms for new physics
(e.g. baryon asymmetry,
dark matter, etc.) ;
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Baryon asymmetry and electroweak baryogenesis

__(EWBG)

Baryon-to-photon ratio

(ny —ng)/ny ~ 1077 Should be zero after the cosmic inflation
Sakharov’s conditions for BAU v

1. Baryon number violation
L Sphaleron process

2. Violation of C and CP

L Extended Higgs sector .
3. Departure from thermal equilibrium

L Strongly first order phase transition
(1tOPT): ¢ /T 2 1 | Potential T

SM Higgs sector w/ one doublet: barrier True vacuum

o Electroweak phase transition (EWPT) is NOT of 15t
order for mj, = 125 GeV

Quantum
tunneling

EWBG is an important physics case relating the Higgs

sector to BSM phenomena
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Strongly 15t OPT and Higgs boson couplings

Models with extended Higgs sector - 600;Mm |
e 15t OPT can be easily realized 500} 1

e Signatures are testable at colliders — 400§

L

@,

e.g. Two Higgs doublet model (2HDM) F 300;

e Condition for strongly 15t OPT:¢./T. 2 1200?
100}

w) Large deviation in the triple Higgs "¢ 0= == mr
boson coupling (AN, / Ak 2 10%)  *5736 100 136 200 250 300
EWPT can be tested at future colliders M[GeV]
. High-Luminosity LHC: [Kanemura, Okada, Senaha (2005)]
—0.8 < Mpn /MM < 7.7 (95% CL) [ATL-PHYS-PUB-2017-001]

e International Linear Collider (ILC) (v/s=1TeV L=4ab™')
AMppp 2 10%  [Fuijii et al., arXiv: 1908.11299]

CP phases can generate observable electric dipole moments
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Gravitational waves (GWs) as a probe of EWPT

Ground-based interferometers:
- Advanced LIGO, Advanced Virgo, KAGRA, ...

e Main targets: GWs from binary systems, supernovae, ...
% New era of GW astronomy

- GW150914 from a binary black hole:
First direct observation of GWs [LIGO and Virgo (2016)]

- GW170817 from a neutron star merger:
Breakthrough for multi-messenger astronomy (GW + EM)

Future space-based interferometers:
- LISA (2034-), DECIGQO, ...

o Sensitive to GWs from the early Universe
(Strongly 15t OPT, cosmic inflation, ...)

= New era for fundamental physics
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Synopsis

Unraveling the Unveiling the
mystery of the underlying theory

baryon asymmetry beyond the SM
|dentification of
the Higgs sector

A 3
o**
.
.

various Higgs boson
couplings K x the triple Higgs

boson coupling LISA, DECIGO, etg.-""

s®

[ Measurgment of
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Gravitational waves as a probe of the early
Universe

Weak field approximation
e Metric close to flat: g,u () =m0 + by (),  |hy,| <1

W Linearlized Einstein equation in vacuum

h, =0 < Wave equation with v = ¢

Interaction rate of gravitational waves
e Interactionrate: T' = now

/f\l

T3  G3T? =T?/M}
o Expansion rate of the Universe: H ~ T?/Mp
wdh T'/H ~ T3 /M, < 1

GWs decouple at temperatures below the Planck scale

January 11, 2020 Mitsuru Kakizaki 12



Universe earlier than big bang nucleosynthesis

__can be robed ¥ usin GWs
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Relic gravitational waves

Characteristics of relic gravitational waves

e Homogeneous e Isotropic e Static e Unpolarized

Relic GWs are characterized only by frequency f

Energy density of relic gravitational waves

1
Pow = 397G

e Normalized Energy density per unit
logarithmic interval of frequency

— (i hi;)

_ 1dpgw
QC\V(.{) — p. dlnf

N Grit . _ 3H§

Critical density: p. = 3G

January 11, 2020 Mitsuru Kakizaki
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Relic gravitational waves observed today

GWs produced at temperature T;
with abundance Qg , frequency f,

Adiabatic expansion of the Universe
3

Q : scale factor sa” = const.
m Energy density and frequency red-shifted:
paw x 1/a* fox1/a

v

GWs observed today

. 100 '/*
e Relic abundance: vahQ'zl-?xlO“"(g—t) Qew

;N\ 1/6 -
Frequency: ~ 17 x 1075 | Lo ) 1.
y 9 y o = 17> 107" 150 100 GeV ) T, 7

e.g., for typical electroweak phase transition
T, ~ 100 GeV f,/H, ~ 10> — 10" mmd fo~107° —10"" Hz

Range for future space-based interferometers
January 11, 2020 Mitsuru Kakizaki 15
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GWs from 1st OPT

Bubble collision

Bubble nucleation

\/

<90> '

C. f BO|I|ng water

Linearlized Einstein equation for the
metric perturbation 9., = M + 1y

Hhyw ~ 1w« Sources of GWs

1. Collision of bubble walls
2. Sound wave
3. Plasma turbulence

e GW spectrum is derived from finite temperature effective potential V g

January 11, 2020 Mitsuru Kakizaki 17



Important quantities for GW spectrum

Bubble nucleation rate per unit volume per unit time:

['(t) = Lo(t) exp[=SE(t)] Sp(T)=S:(T)/T S = / d*r B(ﬁwb)2 + Veg (s, T)

Transition temperature [T,

L S3(T,)
~1 B 2B 4n(T,/H,) ~ 14
HY |y T n(T./H.) ~ 140

Released false vacuum energy (Latent heat)

‘ , . T*
«T) = —Vaalon(T). T) + Td‘éfr(waér(T),T) Normalized parameter: o = P:d (T)*)
Inverse of the duration of phase transition
dS 1 dI' ]
p=- 8 YT, Normalized parameter: Hﬁ (=5)

Wall velocity U,

January 11, 2020 Mitsuru Kakizaki 18



GW spectrum

Rough spectrum from the dominant sound wave contribution

fpeak X Uz;lT* (g*)

o Complicated numerical simulations are necessary

e Our analysis relies on the approximate fitting formula
provided by Caprini et al. [caprini et al. (2015)]

January 11, 2020 Mitsuru Kakizaki 19
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Fisher Analysis

L . GW spectrum for GW spectrum for
Likelihood function parameter set {p} fiducial parameter set {p }

« [sl o, 151 — S50 o
-{3#2 o A _ 271)1)5 (] h\Js P — D) P :
X (p} 1P} o Y T8 () 1 S APN]

t
Observation period Effective sensitivity of interferometer
l Taylor expansion w.r.t. {p} = {p} Confidence ellipse
. . Inclination:
()\ ({P} {P}) ab( o Pa)(Pb - [)b) Db “ o0 Oab
Fisher information matrix N
ab — 2]:)1)5 f 01’ S’l f {[)} 01’( Sh(./ {[)} | ‘ . éO’b
0 +Sh(f {1)})] PP >
. o

The inverse F,' is the covariance matrix L >

Pa

n.b.: we assume that these expressions are applicable to
a single-detector like LISA

January 11, 2020 Mitsuru Kakizaki 21



Constraints on the shape of GW spectrum

=
GW spectrum . LISA DECIGO
| Ny b
1075 /

e Fiducial values
e Point 1: (fpcak-Qpcak)

102 Hz,1077), 107 >3

( .
e Point 2: (fpeak, Qpeak) = (10~! Hz, 107'%), 10 S 4 ’
hd POiIlt 3: (fpcak' Qpcak) - (10 HZ- 10_10)3 10 15
) B . 1 2 4 3
e Point 4: (fpeak, Qpeax) = (1071 Hz, 10~14). p—ry g e = fHz)
1074 0.1 100

Expected constraints on the GW spectrum

. . Q(‘_S"f'."‘p(?;lk“‘é(_}"ﬂ." peak —1 ““ TObS — 1 yr

e 1 o confidence ellipse
: : | oot Tobs = 3 yr
In (fpeak; Qpeak) for Point 1 < N Tope = 10 yr

fp(?;lk “‘fp(?(lk 1

[Hashino, Jinno, MK, Kanemura, -0.002
Takahashi, Takimoto (2018)]

0.002
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Constraints on transition parameters

Constraining parameters
o The GW spectrum is determined by fpeak; Qpeak

% Our Fisher analysis generically constrains
2 combinations of underlying parameters

Quantities describing transition dynamics

3
T.. Uw, . — LISA

B/ B-1

Expected constraints on the

Q015 ¢
transition parameters o
e Fiducial values G\
(v, B/H,, vy, T.) = (1,100,1,100 GeV) ——— 00@(” o ala
-0.DQQ5?7
e 1 o confidence ellipse in («, 5/H.) \mo\)

for fixed 7, and v, 00015
[Hashino, Jinno, MK, Kanemura,

January 11, 2020 Mitsuru Kakizaki TakahaShi, TakimOtO (201 8)] 23




Models with O(N) symmetry with and

‘_ l . 7 “ ‘A ‘A p l ‘A ‘A l p

Typical examples for 15t OPT from thermal loop effects
Models with CSI

40—
e [ree-level Higgs potential 2 gl
As =r A . :Higgs doublet |
Vo= al®|' + 7151 + > ®*I5) (If 99 3.6 w
_ _ §=(S1,--,8v) |
e Fiducial parameters I 34|
Q L
(N, As) = (2,0.1) § 3.2/
W) (o, 3/H.,T. [GeV]) = (0.080,1000,82) — 30|
Models without CSI 2.8
e Tree-level Higgs potential 26| MO A= 66.7°% |
Vo = —1*| @[ + 45| S* + Aa|@* + ’\4—SI§I“+%VPIQIS?I2 20 =15 =10 =05 00
. . logipa
e Fiducial parazmetezrs [Hashino, Jinno, MK, Kanemura,
(N, As,ms [GeV], g [GeV7]) = (8,0.1,385,0) Takahashi, Takimoto (2018)]

W) (a,B/H.,T. [GeV]) = (0.10,1700, 83)

Models can be distinguished, parameters can be narrowed down




Higgs singlet model

Typical example for 15t OPT from tree-level mixing
o Tree-level Higgs potential

A A
Vo = — 2| @2 + Ao|®|* + pas|®|>S + %S|<I>|2S2 138 + —52 ‘;553 + 72t

[ [Ge I ‘Vs[GeVI lls [GeVl)
0.99; (ws; 0.96,-80, 90, -30)-

‘ Additional Higgs boson mass: m, ¢,

Scaling factor: k ( kx = 1 in the SM) [

_ _ 0.98|

e Fiducial parameters ;
(mu [GeV], k, pos [GeV],vs [GeV], us [GeV]) v 0.97}

= (166, 0.96, —80, 90, —30) [ ILC 250GeV

2ab'1 (10)

"\ 4
““

Future colllders ............

o ILC [Fuijiietal. (2017)] 0oal I / axciuded
! 160 162 164 166 168 170 172 174
The synergy between colliders and Additional Higgs boson mass [GeV]

GW observations can narrow down

the allowed parameter SpaCe Kanemura, Takahashh
January 11, 2020 Mitsuru Kakizaki Takimoto (201 8)] 25
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5. Summary

== Sl
e Models with addltlonal smqlet scalars e Higgs singlet model

4.0¢ (mH{GeV], K, ps[GeV], vsGeV], s’ [GeV])
L 0.99; = (166.4, 0.96, -80, 90, —30)-
3.8 9 SN
O(N) st A «  LISA(10):1,3,1
3.6} witho ] 098 —. N\ e o
* [ \ N=8 ] %
:\E 3-4f 3\ ) ] 097! Fiducial point |
Q | " 4, ] S
o '’
6—) 3.2: 0GeV i e /
o : 0.96 - ¢ .
30 LISA 10 n?(N) singlet ' ab (10')
28 1,3, 1(?yr 2! with ¢, 095! dclTcz1 ]
26- AA"qu/Aws":GGJ% - 0 94
-2.0 -1.5 -1.0 -0.5 0.0 160 162 164 166 168 170 172 174
logip my[GeV]

e \We have evaluated the expected constraints on the
parameters of new physics models with 1st OPT using
future space-based GW observations

o We have shown that the synergy between future colliders
and GW observations can play complementary roles in
determining model parameters

January 11, 2020 Mitsuru Kakizaki 26
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Synergy

Classification of models of 15t OPT based on experimental data

A(T)

Veg = D(T? — T?)¢? — (ET — e)¢® + Tcp“
Non-decoupling loop effects from hypothetical particles
« One Higgs doublet Deviation| kx| hyy | Apnn | GWs
o :I: Al\ddiij[ic;naleCfIar Zinlglets | @) @)
° . 1ne oupliet moae
I Ol O] O
e Multiple Higgs doublets 1 O O ®) ®)
o lll : 2HDM _
e IV: MSSM vV [Light stops excluded at LHC]
Non-thermal effects (tree level) v O O O
e V: Higgs singlet model (HSM) I/ O O O O

e VI: Next-to-MSSM

January 11, 2020 Mitsuru Kakizaki
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Thermal-loop induced first order phase transition

B
Effective potential at one-loop level: 1st OPT
2 5 A
Vg () = —%S’J" + TPJ 4
N ara M?(p) 3 Quantum
+Z;- 612 Vi (#) (ln Q> 2 tunneling

Contribution at finite-temperatures:

T4 ........ B
AVT(SO‘T) - ﬁ i:gs:ons niIB(az) " i:fgn;ions niIF(az)] ...... { ......................
", ._5 %
N v\, M, T
Ipp(a”) =/O dzz® In (1 Fe VET ) a’ = % Potential T
High-temperature expansion: barrier True vacuum
Ve (9, T) ~ D(T? — T§)¢* — ETy* + /\,TTV?" LI QOC/TC o b
4 2 1 2
In(@) = T T2 T oo a/z_a_(lna__3 2) L O(af
B(a’) 51" ) 32\ ap / (@) Bosonic loop contribute

~ 4 2 1 2 _
(@) == T2 -2 (2 _3/2) + 0@ to the cubic term

360 24 32 ap

Strongly 18t OPT(y_/T. > 1)can be achieved by adding bosons

C ~v

Necessary for successful electroweak baryogenesis
January 11, 2020 Mitsuru Kakizaki 29



Models with additional singlet scalars (without

__csl)

ldea: [MK, Kanemura, Matsui (2015)]
e To generally handle strongly 15t OPT via thermal loop,
N isosinglet scalars S; (: =1,--- , N) are introduced

e For simplicity, O(NN) symmetry is imposed

" - 2 —_ — —
Tree-level scalar potential: vy (@, 5) = vau(®) + 2552 + %S|S|4 + L;S|<I>|2|S|2

Singlet scalar boson mass: m2 = u2 + /\%l

Triple Higgs boson coupling: O

] | 3
oy _3my fy L omi | N ms (1 - “%>
hhh = = 2 2 v>mj ;
v w2 v2mi 1272 v®m; mg — 400k

Finite temperature effective potential

(high temperature expansion):
Valp, T) = D(T? = T3)g? — BT + Lt 4.
Pe XE—_*_ {emf‘, + 3my + Nm3 (1 —“—5;) (1 - 3“%)}100”

T 12703 myg Qm%

Non decoupling loop effect from additional scalars 1 1 12 24
January 11, 2020 Mitsuru Kakizaki -7
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CSI| models with additional singlet scalars

|dea [Hashino, Kanemura, Orikasa (2015)]

o Mass parameters are absent in the original Lagrangian
due to Classical Scale Invariance (CSl) [Bardeen (1995)]
o EWSB is directly caused by thermal loop effects
Tree-level scalar potential

= A As =4 A6S . -9 = o/ T,
Vo(‘l’es):§|‘I’\4+T|5|4+7|‘1’|2|5\2 — —
_ _ _ _ 6007
Effective potential along the flat direction o
7 (i) — LRV T MZ(p) B o . 20 .
‘ll(y) N Z 642 J[i (Y) (ln QQ Ci) Ci - 3/2; 400, J0 /1,
. i v Z
Singlet scalar boson mass S ool R,
Nm$§ = 87*v*mj — 6my, — 3m% + 12m] " 200} %
Triple Higgs boson coupling 100 -_
AAnhh ARR 2 ok . , . ]
/\ST(’::;) = % —1= 3 independent of [NV 1 4 12 24 60
hhh hhh N
[Hashino, Kanemura, Orikasa (2015)] [Hashino, MK, Kanemura,

January 11, 2020 Mitsuru Kakizaki MatSUi (201 5)] 31



Higgs singlet model

ldea [Hashino, MK, Kanemura, Ko, Matsui (2016)]

e To investigate strongly 15t OPT and Higgs couplings induced
through Higgs field mixing (at least 2 classical fields needed)

o For simplicity, we introduce a singlet Higgs field S

Tree-level Higgs potential

A() 7—,12 ‘ ', A A
Vo = —pg|®° + Aa|®|" + pas|®*S + %I(PIQSQ +psS + 7552 + %553 T 7554

0
(®) = ( . ) : SM Higgs doublet (S) = pg : Higgs singlet

V2re

Effective potential:

M} (¢s, ¢s) (ln M} (ps, ©s) B C_) cp=cg=5/6
,. 647 Q? ') ¢, =5/6
Higgs boson masses and mixing
m,, (= 125 GeV) : Mass of the discovered Higgs boson
Mg . Mass of the additional Higgs boson @ : Higgs mixing angle

January 11, 2020 Mitsuru Kakizaki 32




Higgs singlet model (contd.) "

. ) . v — _Inxx S
Higgs boson couplings to SM particles «x gaxxlsm

X
K = Ky = Kp = cosf X :SM partiCIe
Triple Higgs boson couplings (effective potential approach)
- Ak — ARbh sM _ 3mj, Omj, m;
e = R T A D T T

PVt 70 P Veir—0 P Vst 70 PV =0
HSM _ 3 off T'= 9 off T'= 9 off, T= 3 off T=
Anai = €0 < 0% > s < 0¢p30ps > o < D502 > M < 03 >

Finite temperature effective potential in one direction
(high temperature expansion)
AT) 4

Vet = D(T* = Tg)¢* — (ET — e)® + — =0
_2Bg_ Ay
- ET’ . —

Effects from the Higgs boson mixing




| sinac | (upper limit)

Direct searches for the additional Higgs boson in
___the HSM at the LHC

Upper limit on the Higgs mixing angle | sin 6|

0o X ] [Robens, Stefaniak (2016)]

0.8 /_Ff'/ — :

! 7 wm=) Constraints on the Higgs

o_sm n ; Vi : boson coupling k(= cos )

0.4 AlTAY —

0 wva : 100

0.2 LHC searches in EPJC 75 (2015) 104 | [ 1
updatednesults _ . : L i

01 =500 300 400 500 600 700 800 900 1000 0.95 i /\/\1/
my, [GeV]

Range of my [GeV] Search channel D g0l Excluded (95% CL) ;

m ' L .

130-145 H—sZZ—>41 & ;

145-158 H—VV (V=W.Z) 0.85!

158-163 SM comb. T

163-170 H—s>WW ;

170-176 SM comb. 0.80} _

176-211 H=VV(V=W.2) 160 180 200 220 240

211-225 H—Z7-4] Mitsuru Kakizaki my 34

225-445 H—VV (V=W.Z)



Predicted values of & and 6

o Condition for strongly 15t OPT 108

) Constraints on «

and 3 for each model  10°

[MK, Kanemura, Matsui (2015)]

104

@ and B to be determined =

by GW observation are useful 103}

In determining model parameters,

such as N and s 102+

n.b.: The experimental prospects are 10!
estimated based on the traditional

*

*

*

*
l>

§ 0
)
4°
* /
¥
I‘

GW spectrum i
[See e.g. Grojean, Servant (2007)]
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Testability of models with additional singlet
scalars with and without CSI
10*

o What if the hhh coupling
is found to be around

AN/ Xh = 2/3(= T0%)

at future colliders?

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
“
*

2 c3 11. o 4 ]

sw (T;= 50 GeV, v, = 0.95 ‘3
[Hashino, MK, Kanemura, Matsui (2016)] 102—‘%t —y— 2= 0 ) - -
10 10 10 10

Models with and without CSI can be distinguished at future GW

interferometers even if they share common /;/,/, coupling

January 11, 2020 Mitsuru Kakizaki 36



Synergy of measurements of various Higgs boson
___couplings and GWs in the HSM

[Hashino, MK, Kanemura, 1.00 r

Ko, Matsui (2016)]

Collider experiments

LHC Run | results

Ky = 1.03“_*8:%},&“, = 0.9
[ATLAS, CMS (2016)]

1+0.10
—-0.10

095

0.90/

-
...........

X

e HL-LHC ,

Aky : 2% [ATLAS, CMS (2013)]  0.85, ,cic0 camsioron
e ILCW/ /s=250GeV [, =92 gb~ !  [ecusAc

. | ® eLISA C2 |

Ay, @ 0.6% [Durieux et al. (2017)] 0.80 ' ecusacs {
e ILCW s=1TeV L=5ab"" eousace T

AN, 2 10% [Fuijii et al. (2015)] 160 180 200 220 240

my[Ge

The synergy between the Higgs boson coupling measurements
and GW observations is important for the HSM Higgs potenti

January 11, 2020 Mitsuru Kakizaki
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Efficiency factor

0.0-1-'-|'--|'-'E| la"‘:l
—-0.5}
s
X !
S —1.0r
(@) L
O
-
—15" “.l"
-2 0L -||. 1 1 I

00 02 04 06 08 10
[Espinosa et al. (2010)]
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Landau pole in CSI model

e Large scalar couplings at the EW scale

w= Landau pole near the EW scale

January 11, 2020

N 1 4 12 60

Q 381 GeV|257 GeV|188 GeV[119 GeV
AAg=10) [[54TeV |17TeV | 28TeV | 33 TeV
A(Ag=0.1)5.3TeV | 16 TeV | 23TeV | 13 TeV
A(Ag=0.2)f52TeV [ 15TeV [ 19TeV | 5.4 TeV
AAg=03)5.0TeV | 14 TeV | 15TeV | 2.7TeV

[Hashino, MK, Kanemura, Matsui

(2016)]

Mitsuru Kakizaki
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LISA design

Name Cl1 C2 C3 C4

Full name N2A5M5L6 | N2AIM5L6 | N2A2M5L4 | N1A1IM2LA4
# links 6 6 4 4

Arm length [km)] 5M 1M 2M 1M
Duration [years] 5 5 5 2
Noise level N2 N2 N2 N1

Planed configuration

e 6 links

o 2.5M km length arms
e 4 years (possible extension to 10 years)

January 11, 2020

Mitsuru Kakizaki

[Caprini et al (2015)]

[Caprini et al (2019)]
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Constraints on the shape of GW spectrum

GW spectrum Qow LISA I DECIGO
/

10°° /

e Fiducial values / BBO
e Point 1: (fpeaks Qpeak) = (1072 Hz,10°7), 10 ’ T_t.“~~\\ /{_f‘(
e Point 2: (fpeak, Qpeak) = (1071 Hz, 107'%), 10 2 SRV ’/
e Point 3: (fpeaks Qpeak) = (10 Hz, 10717), 10-5 A
o Point 4: (fpeak: Qpea) = (107 Hz,1071). 0 1 )2 jNd| 2] .
107 0.1 100

Expected constraints on the GW spectrum for Point1

Qaw, peak "‘(A)G‘/"." peak — 1 Qaw, peak "'(A)G‘/'v.ﬂ peak — 1 Qaw peak ”‘é(i‘f‘." peak ~ 1
Tobs = 1 yr .. >
Tobs =3 yref.,
Tobs = 10 yrf-=-.

-0.002 \ -0.0%

0.002
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Studies on the GWs from 1st order EWPT

Model independent analysis:
[Grojean, Servant (2007); Kikuta, Kohri, So (2014), ...]

Higgs potential with higher order operators:
[Delaunay,Grojean, Wells (2008); Huang, Wan, Wang, Cai, Zhang (2016), ...]

Non-decoupling loop effects from hypothetical particles:

e Light stop loop effects in the MSSM: n.b. Light stops are
[Apreda, Maggiore, Nicolis, Riotto (2002), ...] excluded by LHC
o Additional scalar loop effects: Today’s topic

[MK, Kanemura, Matsui (2015), Hashino, MK, Kanemura, Matsui (2016), ...]

Non-thermal effects at the tree level:

o Next-to-MSSM: [Apreda, Maggiore, Nicolis, Riotto (2002),
Huber, Konstandin, Nardini, Rues (2015), ...]

e Real singlet extension: [Ashoorioon, Konstandin (2008)....]
Large GW signals compatible with EWBG: [No (2011), ...]
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Finding bubble configuration

e Spatial O(3) symmetric bubble action

S4(T) = /47rr2d~r E (%)2 +V(6,T)

e Bounce solution that extremizes S;(T') is obtained by solving

d2¢ 2d¢ dV dé
— + —— — — = 0 with boundary conditions —— =0. &, o
dr?  rdr do Wi y dr| _, 0, ¢ — 0
Thin wall approximation (applicable for small energy difference)
4 ¢r
Sy = —%R:”AVQH + 47 R*S, Sy = / d¢ 2V)'? R :Bubble size
oF
: 25 167S?
Volume energy Surface tension R = ! S, — 1
AVer 7 3(AVig)?
In general

Numerical computation is necessary for finding the solution
(e.g. Overshooting-undershooting method)
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GW spectrum

e Complicated numerical simulations are necessary
o Approximate fitting formula are available  [Caprini et al. (2015)]

Collision of walls (Envelope approximation):

0 - 5 0.11: .'3 ~ o LY 2 100 1/3
glem.'h2 ~ 1.67 x 1077 x Up 5 6_2 KgpQx
022+v)" \1T+a) &

. x 0.62 - T;
o ~ 1.65 x 10~° Hz ny :
f . “x (1.8 —0.1up 1 vg) B (100 Ge\")

Sound waves (Compression waves of thermal plasma):

) 2 1/3 .
~ . ~ 100 < . 1 - T

O b2 ~ 2,65 x 10 6,31 [ 2% ) ( ) e 2 1.9 107 Halt oy
vp3 (1 e 7 f X L-vbd 00 GV

Magnetohydrodynamic (MHD) turbulence:
i 3/2 1/3
~ 2 I 100 - o T 1 - T.
Qturbh ~ 3.35 x 10 Lb‘B (1 T a) ( gi ) fturb ~ 2.7 x 10 HZTbB (100 ée\’,)
o Uy : wall velocity e Rgp, Ky and e = (0.05: efficiency factors

January 11, 2020 Mitsuru Kakizaki 44




Backup slides — GW experiments

January 11, 2020 Mitsuru Kakizaki

45



AEDGE

o Atomic Experiments for Dark matter and Gravity Exploration
[Bertoldi et al., arXiv:1908.00802]

10718
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10—23

10—24
10% 102 10?2 100! 10 100 102 10°
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Landscape of relic GWs

B
sf  cumempray /r T UTHTTTTT T T e Current cosmological
' I : . .
:E ;;:.,' A - Spectn - constraints from
o Wl A ee® 1 CMBand BBN:
- Leap .t /! Y ] e Constraints on
—~~ e LT LLTI '1  Extended . T
W v B b T [ teton ; extra radiation:
—~~ [ ! ! | :
b-10 5 | inaries :l ":. " ' - - A‘NU 5 1
= FiCOBE a1 h M B Qexirah” = 5.6 x 107°AN,
éb - - thpbal 11 Transitioiv ]
12 strings * — .
Z v 1~ Future GW observation
bO‘B‘ : SKA-FTA 1 at space-based
— -14 ;_ Slow-roll inflation - Upper Bound . interferometers:
FoMB-POL 2025/26:  Pre-DECIGO
) Inﬂaﬁpn ] ]
16 F ' mnaton 0=% E Afterwards: DECIGO
F oy T s 2034: LISA
15 -10 N 0 > 10 [Ando (2016 JPS Annual
loglo (f/HZ) Meeting)]
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Indirect detection of gravitational waves

o Effects of gravitational waves have been observed

P
B

e In 1976, Hulse and Taylor T E
discovered the binary pulsar = L -
(neutron star) PSR 1913+16 - -"°F E

e The orbit is contracting - _G e reacin” E
due to the emission 5 . E E
of gravitations waves R -

1993 Nobel prize -

975 1980 1885 1990 1995 2000 2005
Year

[Taylor,Weisberg(2004)]
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DECIGO

Dec-hertz Interferometer Gravitational Wave Observatory

.mtk.nao.ac.j i
° Space-based [tamago.mtk.nao.ac.jp/decigo]

e Arm: 1,000 km

FSwd o) —iE
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Observation of pulsars

Pulsar as a GW detector

o \Very stable pulse period: Excellent clock
e.g. Period of PSR B1937+21

1.557 806468 819794 5 + 0.000 000 000 000 000 4 ms
o GWs between pulsar and Earth Fluctuation in arrival time

Constraints in frequency range f =1/ T (Observation duration)

Square Kilometer Array (SKA)

[www.skatelescope.org]

e Radio telescope
e Site candidates: Africa, Australia

e 2016: Construction Approved
2018-23: SKA1 Construction
2020+: Early Science

January 11, 2020 Mitsuru Kakizaki




Backup slides — High energy experiments
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Belle |l

Run perspectives

Note : Physics cases are based on some assumptions ..
3h 10 L] L] ] L] L) L] Ll 1 l ) T T T  ; I T L L) T T l T T L] L) T I L} 66
x10°5 - -
. e Lpcak t LFV discovery
B—n'Ks N 8; 50 WR in
new CP < | —Int. L oy < 2° X(3872) 3 1 = B—py
> 6 {
Confirm B5Dtv A [ 0™  B—Kvv SM
new physics § 4' o discovery
T J20 ©,
- R -
= R -

Resolve — 2'_ 1 B—Kee LFUV
|Vub| puzzle -g i —110 new physics
o | :

m 0 i i i l Y X R | i l [ I T S| i I 1- e
2019 2021 2023 2025 2027
All the details are in
“The Belle Il Physics Book" ee—A"(xx)y -88—)1:1:(3») B—uv
Kou, P. Urquijo et @ precision for (g-2)u discovery

[Talk by E. Prencipe at Universal physics in Many-Body Quantum Systems (2019)]
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Backup slides - Introduction
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Connections between elementary particles and
the Universe

Greatest puzzles in nature
o What is the Universe made of? <«— Particle physics

e How did the Universe begin? < Cosmology

$ IR

Particle physics (High energy physics)

o Studies the properties of elementary
particles and their interactions

Cosmology

e Studies the origin, evolution
and structure of the Universe

Big bang cosmology connects elementary wwwz2.kek.Jp]

particles and the early Universe [Sheldon Glashow]
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Standard Model of particle physics

Standard Model (SM)

MERT

matter (fermions)

F—ZiKiF <€ Force mediator
gauge bosons

2A—72
quarks

electron

L7k~2>
leptons

-~ 4
electron
neutrino

BT

strong electromagnetic

5@L\A

weak

g5L\Ah

“ﬁ Wy

<} <\ <L}
Zboson W*boson W-boson

w2 2 $iiF «—Origin of elementary

Higgs osons particle mass
(discovered in 2012)

Higgs boson

o Established theory describing elementary particles
e But, some phenomena demand new physics beyond the SM
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The role of high energy colliders

== R
History of the Universe Theories in physics
Energy (Temperature)
t Cosmic inflation :
Baryon asymmetry Particle physics
Dark matter . (Physics beyond
1 TeV - EW phase transition the SM, SM)

1 GeV QCD phase transition } Hadron physics

Observati 1 MeV - Big bang nucleosynthesis} Nuclear physics
established' 1 eV + Recombination } Atomic physics

o Mysteries in the early Universe demand developments in
particle physics

High energy colliders approach the beginning of the Universe
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Motivation

Discovery of the 125 GeV Higgs boson h at the CERN LHC

e The Standard Model (SM) has been established
as a low-energy effective theory below O(100) GeV

This is not the end of the story

Puzzles in the Higgs sector
e Guiding principle?
e Shape of the Higgs potential (multiplets, symmetries, ...)?
e Dynamics behind the electroweak symmetry breaking (EWSB)?

Phenomena beyond the SM (BSM)
e Baryon asymmetry of the Universe (BAU) e Cosmic inflation
e Existence of dark matter e Neutrino oscillations

ldea: Higgs sector = Window to New Physics
e The structure of the Higgs sector is related to BSM models

Information on new physics can be obtained by

investigating the properties of the Higgs sector
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Gravitational waves

Gravitational waves (GWSs)
e Non-uniform motion of a massive object

Ripples of spacetime propagating at the speed of light

c.f. Non-uniform motion of a charged object
Electromagnetic waves

Properties of gravitational waves

e Transverse to the direction of propagation

e Spin 2

e 2 polarization modes: Plus mode i+ & Cross mode h
Sources of gravitational waves

Astrophysical origin Cosmic origin -
e Binaries (NS, BH, ...) e 1st order phase transition

e Cosmic inflation
e Topological defects

e Supernovae
o efc.
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