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1   Introduction
There are many flavor puzzles ; quarks and leptons masses and 
mixings, muon g-2, b->sµµ*, b->cτν*, photon anomalies (DM), 
etc. => Flavor dependent symmetries e.g..U(1)µ-τ provides good 
suggestions to resolve these anomalies.

The CKM mixing angles and CP violating phase of quarks have been 
precisely measured.  
Next task is precisely to measure the neutrino oscillation observations 
and CP violation of lepton sector that will reach                
            at T2K and Nova experiments  T2HK, DUNE.

● Current situations for quarks and leptons 
masses and mixings



What is the principle to control flavors of 
leptons ? => We expect a symmetry.

Abelian: Zn, U(1)µ-τ, etc.  => Two-zero texture 

Non-Abelian: SU(3), S3(61), 
A4(>100), S4(54), etc,  (since 2012).   

=> Non-trivial matrix form

Why it is applied so many times?
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Harrison, Perkins, 
Scott (2002) proposed

Tri-bimaximal Mixing of Neutrino flavors.

Tri-bimaximal Mixing (TBM) is realized by the mass matrix

in the diagonal basis of charged leptons. A4 symmetric

E. Ma, G. Rajasekaran　2001

Why A4???



Even permutation group of four objects (1234) 
12 elements (order 12) are generated by  
S and T:  S2=T3=(ST)3=1 : S=(14)(23), T=(123) 

4 conjugacy classes 
C1: 1                        h=1 
C3: S, T2ST, TST2            h=2 
C4: T, ST, TS, STS       h=3 
C4’: T2, ST2, T2S, ST2S   h=3 

Irreducible representations: 1, 1’, 1”, 3　　 
The minimum group containing triplet that is identified as 3 
flavor.
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Symmetry of tetrahedron

A4 group 



6

Multiplication rule of A4 group 

(LL)1 = L1L1 + L2L3 + L3L2

Irreducible representations: 1, 1’, 1”, 3　　

A4 invariant Majorana neutrino mass term

A4 invariant
3 x 3

for triplet



　In 2012, θ13 was measured by Daya Bay, RENO,  
          Double Chooz, T2K, MINOS,  

        Tri-bimaximal mixing was ruled out !
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να= (UPMNS)αiνi
 α=e,μ,τ             i=1,2,3 
 flavor eigenstates            mass eigenstates  

NuFIT3.2 (2018)         Δm2
atm = m3

2-m1
2    ,     Δm2

sol = m2
2-m1

2 

Neutrino mixing matrix

m1 < m2 < m3 m3 < m1< m2



1’ × 1”   → 1 

A4 is broken by flavon (SU2 singlet scalors) VEV’s. 
A4 controls Yukaw couplings  
  among leptons and flavons with special vacuum　alignments.

 Minimal fields contents and their assignments under A4

A4 triplets  L

A4 singlets

Leptons                    flavons
couples to 
neutrino sector

couples to  
charged lepton sector

●  Traditional application of A4  to realize 
the current neutrino oscillation data

ξ: 1 and ξ’: 1’(1’’) flavors are also introduced.

Charged-Lepton is given by 5 dim., while the neutrino 
sector is given by 6 dim..(Weinberg operator.)



3L  ×  3L ×  3flavon →  1 

3L  ×  1R (1R’, 1R”) ×  3flavon →  1 

After spontaneously symmetry breaking by Flavons:

Z3 (1,T,T2) residual symmetry  
in charged leptons

Z2 (1,S) residual symmetry in 
neutrinos          

+y3<ξ’>

Charged-lepton sector

Neutrino sector

Assumptions



22

Non zero θ13 can be given by the 1-3(3-1) component of 
the above matrix.

Additional Matrix



1.Here, one might think;  
“Can we reduce the number of scalar?” 

even though it is phenomenologically okay…

2.Vacuum alignment would not be a unique solution but  one 
of the solutions; it is like an assumption…

Unsatisfactory points for traditional flavor models

Modular inspired flavor symmetry 
can resolve these issues!!!
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  2   Modular Group and its application

        It is well known that the superstring theory  
        on certain compactifications lead to  
        non-Abelian finite groups. 

Indeed, torus compactification leads to Modular symmetry, 
which includes S3, A4, S4, A5 as its congruence subgroup.  

Advantages:
1. Additional scalar bosons contributing to mass matrix are not 
needed, because Yukawa coupling has its structure originated 
from a modular group; More predictions without assumptions!

2. DM stability can be assured by modular number that is required by a 
modular group; Additional symmetry (Z2) is not needed!
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A4 triplet   3 ( NeR, NµR, NτR )…with -1 modular weight.

A4 singlets   Le,eR 1  ;  Lµ,µR 1” ; Lτ τR  1’…with zero modular weight.

A concrete model

Fermions:

A4 singlets   H(0)… Higgs boson, η*(-3) …inert boson 
 all the bosons are trivial singlets with different modular weights!

Bosons: 

Field contents and their assignments

A modular A4 symmetric scotogenic model  
Takaaki Nomura (Korea Inst. Advanced Study, Seoul), Hiroshi Okada (APCTP, Pohang), Oleg Popov (Seoul Natl. U.). Aug 19, 2019. 12 pp.  
KIAS-P19048, APCTP Pre2019 - 022  
e-Print: arXiv:1908.07457 [hep-ph] | PDF

Fermions Bosons

(L̄Le , L̄Lµ , L̄Lτ ) (eRe , eRµ , eRτ ) NR H η∗

SU(2)L 2 1 1 2 2

U(1)Y
1
2 −1 0 1

2 -12

A4 1, 1′, 1′′ 1, 1′′, 1′ 3 1 1

−k 0 0 −1 0 −3

TABLE I: Fermionic and bosonic field content of the model and their charge assignments under

SU(2)L × U(1)Y ×A4 in the lepton and boson sector, where −k is the number of modular weight

and the quark sector is the same as the SM.

Couplings

Y (6)
1 Y (2)

3 Y (4)
3

A4 1 3 3

−k 6 2 4

TABLE II: Modular weight assignments for Yukawas.

II. MODEL

In this section we introduce our model, which is based on A4 modular symmetry. Lep-

tonic and scalar fields of the model and their representations under A4 symmetry and mod-

ular weights are given by Tab. I, while the ones of Yukawa couplings are given by Tab. II.

Under these symmetries, we write renormalizable Lagrangian as follows:

−LLepton =
∑

ℓ=e,µ,τ

yℓL̄Lℓ
HeRℓ

+ ανL̄Le(Y
(4)
3 ⊗NR)1η̃ + βνL̄Lµ(Y

(4)
3 ⊗NR)1′′ η̃ + γνL̄Lτ (Y

(4)
3 ⊗NR)1′ η̃

+M1(Y
(2)
3 ⊗ N̄C

R ⊗NR) + h.c., (II.1)

where η̃ ≡ iσ2η∗, σ2 being second Pauli matrix, and charged-lepton matrix is diagonal thanks

to the unique representation of A4.

The full symmetry of the leptonic sector of the model is SU(2)L×U(1)Y ×A4, where the

Z2 symmetry of [33] is replaced with modular symmetry Γ3 ≃ A4. A4 serves three purposes:

flavor symmetry, scotogenic symmetry, and dark matter stabilizing symmetry.

3

…Needed Yukawa couplings 
(Only even modular weight  can be allowed! )

http://inspirehep.net/author/profile/Nomura%2C%20Takaaki?recid=1750353&ln=ja
http://inspirehep.net/search?cc=Institutions&p=institution:%22Korea%20Inst.%20Advanced%20Study%2C%20Seoul%22&ln=ja
http://inspirehep.net/author/profile/Okada%2C%20Hiroshi?recid=1750353&ln=ja
http://inspirehep.net/search?cc=Institutions&p=institution:%22APCTP%2C%20Pohang%22&ln=ja
http://inspirehep.net/author/profile/Popov%2C%20Oleg?recid=1750353&ln=ja
http://inspirehep.net/search?cc=Institutions&p=institution:%22Seoul%20Natl.%20U.%22&ln=ja
http://arxiv.org/abs/arXiv:1908.07457
http://arxiv.org/pdf/1908.07457.pdf
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Sum of weights vanish.
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Y (6)
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3 Y (4)
3
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tonic and scalar fields of the model and their representations under A4 symmetry and mod-

ular weights are given by Tab. I, while the ones of Yukawa couplings are given by Tab. II.

Under these symmetries, we write renormalizable Lagrangian as follows:

−LLepton =
∑
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(4)
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(4)
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(4)
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(2)
3 ⊗ N̄C
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to the unique representation of A4.
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3

The modular forms of weight 2, (y1, y2, y3), transforming as a triplet of A4 are written

in terms of Dedekind eta-function η(τ) and its derivative η′(τ) [2]:

y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

y2(τ) =
−i

π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (II.2)

y3(τ) =
−i

π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
.

The overall coefficient in Eq. (II.2) is one possible choice; it cannot be uniquely determined.

Then, any couplings of higher weight are constructed by multiplication rules of A4, and one

finds the following couplings:

Y (6)
1 = y31 + y32 + y33 − 3y1y2y3, Y (4)

3 =

⎡

⎢⎢⎢⎣

y21 − y2y3

y23 − y1y2

y22 − y1y3

⎤

⎥⎥⎥⎦
. (II.3)

Higgs potential of our model is equivalent to the potential of the Scotogenic model [33]

without loss of generality, where a quartic coupling that plays the role in generating the

nonzero neutrino masses is given by Y (6)
1 (η†H)2. The (η†H) term that was forbidden in

the inert two Higgs doublet model (2HDM) by Z2 invariance is now forbidden by modular

invariance via A4. This is due to the fact that A4 singlet modular form with modular weight

2 can not exist.

The right-handed neutrino mass matrix is given by

MN =
M1

3

⎡

⎢⎢⎢⎣

2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y3,1 2y3

⎤

⎥⎥⎥⎦
. (II.4)

Then, the Majorana mass matrix is diagonalized by an unitary matrix as DN ≡ UMNUT ,

and their mass eigenstates are defined by ψR, where NR = UTψR.

The Dirac Yukawa matrix is given by

yη =

⎡

⎢⎢⎢⎣

αν 0 0

0 βν 0

0 0 γν

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

y′1 y′3 y′2

y′3 y′2 y′1

y′2 y′1 y′3

⎤

⎥⎥⎥⎦
, (II.5)

where Y (4)
3 ≡ (y′1, y

′
2, y

′
3), and we impose the purtabative limit Max[yη] !

√
4π in the numer-

ical analysis.

4

…Non-trivial quartic term to get nonzero 
neutrino mass at one-loop level 
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4

them. In addition to the neutrinos, several groups have discussed the possibilities of light

SM fermions such as electrons, muon, and light quarks refs. [? ].

refs. [111? ? ? –150] at two-loop level, refs. [151–179] at three-loop level, and refs. [180–

182] at four-loop level.

Systematic loop classifications are found in refs. [183, 184].

Ref. [185–187] discuss the systematic analysis of neutrino oscillation, charged lepton

flavor violation, and collider physics in the framework of neutrinophilic and inert Two Higgs

doublet model. Ref.[? ] discussed possibility of discriminating models by focussing on DM

and collider physics such as ILC. Ref.[? ] discussed possibility of discriminating models by

focussing collider physics such as LHC and/or ILC.

II. NEUTRINO MASS

A. Canonical seesaw

1. Type-I seesaw

First of all, we review the mechanism to induce the active neutrino masses with Majorana

field. This is called canonical seesaw model, and two or more than two Majorana heavy

fermions are introduced in order to explain the current neutrino oscillation data. Below we

fix its number to be three for a while. Then the relevant Lagrangian is given by

−L = yℓaL̄LaHeRa + yDab
L̄LaH̃NRb

+
1

2
MNb

N̄Rb
NC

Rb
+ h.c., (II.1)

where (a, b) = 1 − 3 denote mass eigenstates1, H̃ ≡ iσ2H∗, σ2 being the second component

of Pauli matrix, and MN (as well as the charged-lepton Yukawa coupling yℓ) can be taken to

be a diagonal basis without loss of generality. After the spontaneous electroweak symmetry

breaking of the SM Higgs H , one finds the six by six symmetric mass matrix of neutral

fermions in basis of [νL, NC
R ]

T as

M =

⎡

⎣

0 mT
D

mD MN

⎤

⎦ , (II.2)

1 These indices a, b are used throughout our discussion when they are mass eigenstates.

4

These terms are forbidden by 
modular weight!

Leading	 to	 assure	 the	 stability	 of	 DM!
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y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)
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Fermions Bosons

(L̄Le , L̄Lµ , L̄Lτ ) (eRe , eRµ , eRτ ) NR H η∗

SU(2)L 2 1 1 2 2

U(1)Y
1
2 −1 0 1

2 -12

A4 1, 1′, 1′′ 1, 1′′, 1′ 3 1 1

−k 0 0 −1 0 −3

TABLE I: Fermionic and bosonic field content of the model and their charge assignments under

SU(2)L × U(1)Y ×A4 in the lepton and boson sector, where −k is the number of modular weight

and the quark sector is the same as the SM.

Couplings

Y (6)
1 Y (2)

3 Y (4)
3

A4 1 3 3

−k 6 2 4

TABLE II: Modular weight assignments for Yukawas.

II. MODEL

In this section we introduce our model, which is based on A4 modular symmetry. Lep-

tonic and scalar fields of the model and their representations under A4 symmetry and mod-

ular weights are given by Tab. I, while the ones of Yukawa couplings are given by Tab. II.

Under these symmetries, we write renormalizable Lagrangian as follows:

−LLepton =
∑

ℓ=e,µ,τ

yℓL̄Lℓ
HeRℓ

+ ανL̄Le(Y
(4)
3 ⊗NR)1η̃ + βνL̄Lµ(Y

(4)
3 ⊗NR)1′′ η̃ + γνL̄Lτ (Y

(4)
3 ⊗NR)1′ η̃

+M1(Y
(2)
3 ⊗ N̄C

R ⊗NR) + h.c., (II.1)

where η̃ ≡ iσ2η∗, σ2 being second Pauli matrix, and charged-lepton matrix is diagonal thanks

to the unique representation of A4.

The full symmetry of the leptonic sector of the model is SU(2)L×U(1)Y ×A4, where the

Z2 symmetry of [33] is replaced with modular symmetry Γ3 ≃ A4. A4 serves three purposes:

flavor symmetry, scotogenic symmetry, and dark matter stabilizing symmetry.

3

=

 η: Dedekind eta-function
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4me,  mµ,  mτ fix yle, ylµ, ylτ. 
Δm2

sol /Δm2
atm  and θ23, θ12, θ13  fix αν, βν, γν and τ .

Free parameters for neturino:  αν, βν, γν and τ 
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We consider the case of Normal neutrino mass 
hierarchy m1 < m2 < m3
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FIG. 1: The sum of neutrino masses
∑

m(≡
∑

Dν) versus sin2 θ12(red color) and sin2 θ23(blue

color) in the left figure and sin2 θ13(blue color) in the right figure. Here, the horizontal black solid

lines are the best fit values, the green dotted lines show 3σ range, and the vertical black line shows

upper bound on the cosmological data as shown in the neutrino section.

the recent cosmological data; Tr[Dν ] ! 0.12 eV. 3 Then, we provide the experimentally

allowed ranges for neutrino mixings and mass difference squares at 3σ range [45] as follows:

∆m2
atm = [2.431− 2.622]× 10−3 eV2, ∆m2

sol = [6.79− 8.01]× 10−5 eV2, (IV.1)

sin2 θ13 = [0.02044− 0.02437], sin2 θ23 = [0.428− 0.624], sin2 θ12 = [0.275− 0.350].

The range of absolute values in three dimensionless parameters αν , βν , γν are taken to be

[0.1−1], while the mass parametersM1 is of the order 100 TeV. We also choosemR = 534±8.5

GeV and mI =
√

m2
R +∆m2 for inert scalar mass.

Fig. 1 shows the sum of neutrino masses
∑

m(≡
∑

Dν) versus sin2 θ12(red color) and

sin2 θ23(blue color) in the left figure and sin2 θ13(blue color) in the right figure. Here, the

horizontal black solid lines are the best fit values, the green dotted lines show 3σ range, and

the vertical black line shows upper bound on the cosmological data as shown in the neutrino

section. It suggests that all the three mixings run over the experimental ranges, while
∑

m

is allowed by the narrow range of [0.065-0.070] eV that is always below the cosmological

bound 0.12 eV.

Fig. 2 shows phases of δℓCP (red color) and α21(blue color) in terms of α31. This figure

3 If this constraint is removed, another allowed range can be found.
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FIG. 2: Phases of δℓCP (red color) and α21(blue color) in terms of α31.
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FIG. 3: The lightest neutrino mass versus the effective mass for the neutrinoless double beta decay.

implies that Dirac CP is allowed by the range [50-70, 290-310] [deg], α21 is [130-150, 210-230]

[deg], and α31 is [30-110, 250-350] [deg].

Fig. 3 demonstrates the lightest neutrino mass versus the effective mass for the neutrino-

less double beta decay. It suggests that 0.0049 ! m1 ! 0.0072 eV and 0.002 ! ⟨mee⟩ ! 0.005

eV. Another remarks are in order:

1. The typical region of modulus τ is found in rather narrow modular field space as 0.43

! Re[τ ] ! 0.45 and 0.65 ! Im[τ ] ! 0.67.

2. Typical scale of LFVs are very small in our analyses, therefore following upper bounds

are realized:

BR(µ → eγ) ! 6.0×10−15, BR(τ → eγ) ! 1.2×10−15, BR(τ → µγ) ! 1.7×10−14.
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Predicted Phases

Predicted δcp…[100-120,230-250] deg,
Predicted α21…[130-150,210-230] deg,
Predicted α31…[165-190] deg.
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FIG. 1: The sum of neutrino masses
∑

m(≡
∑

Dν) versus sin2 θ12(red color) and sin2 θ23(blue

color) in the left figure and sin2 θ13(blue color) in the right figure. Here, the horizontal black solid

lines are the best fit values, the green dotted lines show 3σ range, and the vertical black line shows

upper bound on the cosmological data as shown in the neutrino section.
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FIG. 2: Phases of δℓCP (red color) and α21(blue color) in terms of α31.

Fig. 2 shows phases of δℓCP (red color) and α21(blue color) in terms of α31. This figure

implies that Dirac CP is allowed by the range [100-120, 230-250] [deg], α21 is [130-150,

210-230] [deg], and α31 is [165-190] [deg].

Fig. 3 demonstrates the lightest neutrino mass versus the effective mass for the neutrino-

less double beta decay. It suggests that 0.0049 ! m1 ! 0.0072 eV and 0.002 ! ⟨mee⟩ ! 0.005

eV. Another remarks are in order:
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    ●  Mass matrices of A4 model are determined   
         essentially by the modular parameter τ.    
                                                              
    ●  Predictions are sharp and testable in the future without any 
assumptions unlikely to traditional model buildings.   
    

3  Summary
●  Modular inspired non-Abelian discrete flavor symmetries 
provides several predictions without introducing so many Higgs 
fields.

More phenomenological discussions can be possible or needed !!!

●  Further applications are expected to explain any flavor 
dependent anomalies; muon related anomalies, dark matter, etc… 


