Dark matter physics In dark SU(2) gauge symmetry with non-Abelian kinetic mixing

Takaaki Nomura (KIAS)

Based on work in progress Collaborated with P. Ko (KIAS) and H. Okada (APCTP)

2020-01-11 @ NCTS dark physics workshop, Taiwan

- 2. Model setup
- 3. Phenomenology
- 4. Summary and discussion

Many observation indicate the existence of dark matter

(100 👷

V_c (km

50

150

- $v(r) \propto \sqrt{M(r)/r}$
- $M(r) \propto r$ in outside of visible region
- Clusters of galaxies
- Gravitational lensing
- Formation of Large scale structure
- Bullet Clusters
- **CMB** anisotropy : WMAP, Planck

Only through gravitational interaction

Nature of typical particle DM candidate No electric charge, no color, Non-baryonic Weakly interacting Stability DM -How DM can be stable? By some symmetry? Ex) Z_2 parity Theory is symmetric under SM DM $\phi_{SM} \rightarrow \phi_{SM}$ SM $\phi_{D} \rightarrow -\phi_{D}$ DM cannot decay DM is lightest odd particle

Nature of typical particle DM candidate

 >No electric charge, no color, Non-baryonic

 >Weakly interacting

 >Stability

How DM can be stable? By some symmetry? R-parity (SUSY), KK-parity (UED), Global Z_N symmetry, etc. Usually Z_N symmetry is just assumed \rightarrow there would be an origin

Stable DM form hidden gauge symmetry

- Abelian gauge symmetry
- Non-Abelian gauge symmetry

DM stability from Hidden gauge symmetry

Abelian gauge symmetry case

Ex) Z_2 discrete symmetry from U(1) (Krauss and Wilczek PRL 62 (1989))

U(1) breaking by $\langle \Phi_2 \rangle \neq 0$ Φ_2 :Scalar field with U(1) charge 2

 $\exp[i\hat{Q}\pi]|Vacuum\rangle = |Vacuum\rangle$:Vacuum has remaining symmetry

For any field ϕ_{2n+1} with U(1) charge 2n+1 (n: integer)

$$\phi_{2n+1} \rightarrow \exp[i\hat{Q}\pi]\phi_{2n+1} = \exp[i\pi(2n+1)]\phi_{2n+1} = -\phi_{2n+1}$$

Z₂ symmetry if U(1) charge of any field is integer Stability of DM from the symmetry

There are models based on the idea

(B. Battel PRD 83 (2011); M. Ibe, S. Matsumoto, and T.T. Yanagida PLB 708 (2011); W.F.Chiang, C.F. Wong PRD 85 (2012); T.N., C.W.Chian, J.Tandean PRD 87 (2013); P.Ko, Y.Tang JCAP 1406 (2014); etc..)

DM stability from Hidden gauge symmetry

Non-Abelian gauge symmetry scenarios

There are many scenarios

Discrete symmetry from SU(2)

(T.N., C.W.Chian, J.Tandean JHEP 1401 (2014); T.N., C.Chen PLB 746 (2015))

Stable vector DM by unbroken U(1) from SU(2)

(V.V.Khoze, G.Ro JHEP 1410 (2014); S.Beak, P.Ko, W.I.Park JCAP 1410 (2014))

Stable vector DM by custodial symmetry from SU(N)

(T.Hambye JHEP 0901 (2009); C.Gross, O.Lebedev, Y.Mambrini 1505.07480; S.Di Chiara, K.Tuominen 1506.03285)

Strongly interacting SU(N) hidden sector

(T.Hur, P.Ko PRL 106 (2011); M.R.Buckley, E.T.Neil PRD 87 (2013); J. Kubo, K.S.Lim, M.Lindner JHEP 1409 (2014) etc..)

We consider simple case of $SU(2)_D$

Suppose SU(2) triplet scalars Φ , Φ ' get VEVs as

 $\langle \phi_0 \rangle \neq 0, \langle \phi'_1 \rangle \neq 0$ For components with eigenvalue of T_3 is 0 and 1 $\exp[iT_3 2\pi] |Vacuum\rangle = |Vacuum\rangle$ Remaining discrete symmetry

Then for any particle with odd T₃ value

$$\exp[iT_3 2\pi]X = \exp[i(2n+1)2\pi]X = -X$$

 \Box Z₂ symmetry: odd/even for field with odd/even T₃ value

The lightest Z₂ odd particle in dark sector is DM

Structure of the model

Two sector can interact via scalar mixing and/or gauge boson mixing

 \Rightarrow We consider kinetic mixing associated with SU(2)_D

2. Model setup

- 3. Phenomenology
- 4. Summary and discussion

We introduce $SU(2)_D$ dark sector

Fields	χ	$ec{\phi}$	$\vec{\phi}'$
$SU(2)_D$	2	3	3

$$\vec{\phi} = (\phi_1, \phi_2, \phi_1)^T, \quad \vec{\phi}' = (\phi'_1, \phi'_2, \phi'_3)^T$$

 $\chi = (\chi_1, \chi_2)^T$

Lagrangian

$$\begin{aligned} \mathcal{L}_{D} &= -\frac{1}{4} X^{a}_{\mu\nu} X^{a\mu\nu} + D_{\mu} \vec{\phi} \cdot D^{\mu} \vec{\phi} + D_{\mu} \vec{\phi}' \cdot D^{\mu} \vec{\phi}' + \bar{\chi} (D_{\mu} \gamma^{\mu} - M_{\chi}) \chi \\ V &= \mu_{H}^{2} H^{\dagger} H + \lambda_{H} (H^{\dagger} H)^{2} \\ &+ \mu_{1}^{2} \vec{\phi} \cdot \vec{\phi} + \mu_{2}^{2} \vec{\phi}' \cdot \vec{\phi}' + \lambda_{1} \left(\vec{\phi} \cdot \vec{\phi} \right)^{2} + \lambda_{2} \left(\vec{\phi}' \cdot \vec{\phi}' \right)^{2} + \lambda_{3} \left(\vec{\phi} \cdot \vec{\phi}' \right)^{2} \\ &+ \lambda_{4} \left(\vec{\phi} \cdot \vec{\phi} \right) \left(\vec{\phi} \cdot \vec{\phi}' \right) + \lambda_{5} \left(\vec{\phi}' \cdot \vec{\phi}' \right) \left(\vec{\phi} \cdot \vec{\phi}' \right) + \lambda_{6} \left(\vec{\phi} \cdot \vec{\phi} \right) \left(\vec{\phi}' \cdot \vec{\phi}' \right) \\ &+ \lambda_{H\phi} \left(\vec{\phi} \cdot \vec{\phi} \right) (H^{\dagger} H) + \lambda_{H\phi'} \left(\vec{\phi}' \cdot \vec{\phi}' \right) (H^{\dagger} H) \\ &+ \frac{y_{\chi\phi}}{2} \bar{\chi} \left(\vec{\phi} \cdot \vec{\sigma} \right) \chi + \frac{y_{\chi\phi'}}{2} \bar{\chi} \left(\vec{\phi}' \cdot \vec{\sigma} \right) \chi \end{aligned}$$

Spontaneous symmetry breaking in dark sector

We require VEV configuration

$$\langle \vec{\phi} \rangle = \left(0, 0, \frac{v_{\phi}}{\sqrt{2}}\right), \quad \langle \vec{\phi'} \rangle = \left(\frac{v_{\phi'}}{\sqrt{2}}, 0, 0\right)$$

$$\square$$
 SU(2)_D breaks into Z₂ symmetry

$$\chi = (\chi_1, \chi_2)^T$$
 : Z₂ odd, Other particles: Z₂ even

Conditions to obtain the VEV configuration

$$\begin{split} \lambda_1 v_{\phi}^3 &+ \frac{1}{2} \lambda_6 v_{\phi} v_{\phi'}^2 + \frac{1}{2} \lambda_{H\phi} v_{\phi} v_H^2 - \mu_1^2 v_{\phi} = 0, \\ \lambda_2 v_{\phi'}^3 &+ \frac{1}{2} \lambda_6 v_{\phi}^2 v_{\phi'} + \frac{1}{2} v_{\phi} \lambda_{H\phi'} v_H^2 - \mu_2^2 v_{\phi'} = 0, \\ \lambda_H v_H^3 &+ \frac{1}{2} \lambda_{H\phi} v_{\phi}^2 v_H + \frac{1}{2} \lambda_{H\phi'} v_{\phi'}^2 v_H - \mu_H^2 v_H = 0, \\ \lambda_4 v_{\phi}^2 + \lambda_5 v_{\phi'}^2 = 0. \end{split}$$

Scalar masses in dark sector

Scalar potential after SSB

$$\mathcal{L}_{M_S} \simeq \frac{1}{4} \lambda_3 v_{\phi'}^2 \phi_1^2 + \frac{1}{2} \lambda_3 v_{\phi} v_{\phi'} \phi_1 \phi_3' + \lambda_1 v_{\phi}^2 \phi_3^2 + \lambda_6 v_{\phi} v_{\phi'} \phi_3 \phi_1' + \lambda_2 v_{\phi'}^2 \phi_1'^2 + \frac{1}{4} \lambda_3 v_{\phi}^2 \phi_3'^2 + \lambda_H v_H^2 \tilde{h}^2 + \lambda_{H\phi} v_{\phi} v_H \phi_3 h + \lambda_{H\phi'} v_{\phi'} v_H \phi_1' h,$$

(we took $\lambda_4 \rightarrow 0$ for simplicity)

NG bosons:
$$\phi_2, \phi'_2, -\sin\alpha\phi_1 + \cos\alpha\phi'_3$$
 $\left(\sin\alpha[\cos\alpha] = \frac{v_{\phi'}[v_{\phi}]}{\sqrt{v_{\phi}^2 + v_{\phi'}^2}}\right)$
Scalar mass terms

 $\frac{1}{4}\lambda_3(v_{\phi}^2 + v_{\phi'}^2)\left(\cos\alpha\phi_1 + \sin\alpha\phi'_3\right)^2$: corresponding state does not mix

$$\mathcal{L}_{M_S} \supset \frac{1}{2} \begin{pmatrix} h \\ \phi_3 \\ \phi_1' \end{pmatrix}^T \begin{pmatrix} 2\lambda_H v_H^2 & \lambda_{H\phi} v_\phi v_H & \lambda_{H\phi'} v_{\phi'} v_H \\ \lambda_{H\phi} v_\phi v_H & 2\lambda_1 v_\phi^2 & \lambda_6 v_\phi v_{\phi'} \\ \lambda_{H\phi'} v_{\phi'} v_H & \lambda_6 v_\phi v_{\phi'} & 2\lambda_2 v_{\phi'}^2 \end{pmatrix} \begin{pmatrix} h \\ \phi_3 \\ \phi_1' \end{pmatrix}$$

Scalar masses in dark sector

We consider simplified scenario $\lambda_{H\phi'}, \lambda_6 \rightarrow 0$

Mass matrix becomes

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \tilde{h} \\ \phi_3 \end{pmatrix}^T \begin{pmatrix} 2\lambda_H v_H^2 & \lambda_{H\phi} v_\phi v_H \\ \lambda_{H\phi} v_\phi v_H & 2\lambda_1 v_\phi^2 \end{pmatrix} \begin{pmatrix} \tilde{h} \\ \phi_3 \end{pmatrix}$$

Mass eigenvalues

$$m_{h,\Phi_1}^2 = \lambda_H v_H^2 + \lambda_1 v_\phi^2 \pm \sqrt{\left(\lambda_H v_H^2 - \lambda_1 v_\phi^2\right)^2 + \lambda_{H\phi}^2 v_\phi^2 v_H^2}$$

Mass eigenstate

$$\begin{pmatrix} h \\ \Phi_1 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ \phi_3 \end{pmatrix}, \quad \tan 2\alpha = \frac{\lambda_{H\varphi} v_{\phi} v_H}{\lambda_H v_H^2 - \lambda_1 v_{\phi}^2}$$

$$\Phi_2 \simeq \phi_1', \quad m_{\Phi_2}^2 \simeq 2\lambda_2 v_{\phi'}^2. \qquad \text{SM(-like) Higgs : h}$$

Gauge sector with non-Abelian kinetic mixing

We introduce higher dimensional operator generating kinetic mixing

$$\mathcal{L}_{XB} = \frac{C_{\phi}}{\Lambda} X^{a}_{\mu\nu} B^{\mu\nu} \phi^{a} + \frac{C_{\phi'}}{\Lambda} X^{a}_{\mu\nu} B^{\mu\nu} \phi'^{a}$$

$$\longrightarrow \mathcal{L}_{KM} = -\frac{1}{2} \sin \chi_{1} X^{1}_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \sin \chi_{3} X^{3}_{\mu\nu} B^{\mu\nu}$$

$$\left(\sin \chi_{1} \equiv \sqrt{2} C_{\phi'} v_{\phi} / \Lambda \text{ and } \sin \chi_{2} \equiv \sqrt{2} C_{\phi} v_{\phi'} / \Lambda \right)$$

For small mixing we approximate

$$B \simeq \tilde{B} - \chi_1 X^1_\mu - \chi_3 X^3_\mu, \quad X^1_\mu \simeq \tilde{X}^1_\mu, \quad X^3_\mu \simeq \tilde{X}^3_\mu.$$

Mass term

$$\mathcal{L}_M = g_D^2 v_\phi^2 X_\mu^1 X^{1\mu} + g_D^2 (v_\phi^2 + v_{\phi'}^2) X_\mu^2 X^{2\mu} + g_D^2 v_{\phi'}^2 X_\mu^3 X^{3\mu}$$

Fermions in dark sector

Mass term after SSB

$$\mathcal{L} \supset M_{\chi}(\bar{\chi}_{1}\chi_{1} + \bar{\chi}_{2}\chi_{2}) + \frac{y_{\chi\phi}v_{\phi}}{2}(\bar{\chi}_{1}\chi_{1} - \bar{\chi}_{2}\chi_{2}) + \frac{y_{\chi\phi'}v_{\phi'}}{2}(\bar{\chi}_{1}\chi_{2} + \bar{\chi}_{2}\chi_{1})$$
$$\equiv M_{11}\bar{\chi}_{1}\bar{\chi}_{1} + M_{12}(\bar{\chi}_{1}\chi_{2} + \bar{\chi}_{2}\chi_{1}) + M_{22}\bar{\chi}_{2}\chi_{2},$$

Mass eigenvalues and eigenstate

$$m_{\chi_l,\chi_h} = \frac{1}{2}(M_{11} + M_{22}) \pm \frac{1}{2}\sqrt{(M_{11} - M_{22})^2 + 4M_{12}^2},$$
$$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} \cos\theta_{\chi} & -\sin\theta_{\chi} \\ \sin\theta_{\chi} & \cos\theta_{\chi} \end{pmatrix} \begin{pmatrix} \chi_l \\ \chi_h \end{pmatrix}, \qquad \tan 2\theta_{\chi} = \frac{2M_{12}}{M_{11} - M_{22}} = \frac{y_{\chi\phi'}v_{\phi'}}{y_{\chi\phi}v_{\phi}}$$

The lighter state is the DM candidate

Interactions associated with DM

Scalar portal interactions

$$\mathcal{L} \supset \frac{y_{\chi\phi}}{2} \Big[\phi_3(\cos 2\theta_\chi \bar{\chi}_l \chi_l - \cos 2\theta_\chi \bar{\chi}_h \chi_h - \sin 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \\ + \phi_1(\sin 2\theta_\chi \bar{\chi}_l \chi_l - \sin 2\theta_\chi \bar{\chi}_h \chi_h + \cos 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \Big] \\ + \frac{y_{\chi\phi'}}{2} \Big[\phi'_3(\cos 2\theta_\chi \bar{\chi}_l \chi_h - \cos 2\theta_\chi \bar{\chi}_h \chi_h - \sin 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \\ + \phi'_1(\sin 2\theta_\chi \bar{\chi}_l \chi_l - \sin 2\theta_\chi \bar{\chi}_h \chi_h + \cos 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \Big]$$

Gauge interactions

$$\begin{aligned} \mathcal{L} \supset &\frac{g_D}{2} \left(\cos 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_l - \sin 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_h - \sin 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_l - \cos 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_h \right) X_{\mu}^3 \\ &+ \frac{g_D}{2} \left(\sin 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_l + \cos 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_h + \cos 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_l - \sin 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_h \right) X_{\mu}^1 \\ &+ i \frac{g_D}{2} \left(\bar{\chi}_h \gamma^{\mu} \chi_l - \bar{\chi}_l \gamma^{\mu} \chi_h \right) X_{\mu}^2 + e c_W \chi_1 X_{\mu}^1 J_{EM}^{\mu} + e c_W \chi_3 X_{\mu}^3 J_{EM}^{\mu}, \\ J_{EM}^{\mu} = \sum_{f_{SM}} Q_{f_{SM}} \bar{f}_{SM} \gamma^{\mu} f_{SM}, \end{aligned}$$

- 1. Introduction
- 2. Model setup
- 3. Phenomenology
- 4. Summary and discussion

Interactions associated with DM

Scalar portal interactions

$$\mathcal{L} \supset \frac{y_{\chi\phi}}{2} \Big[\phi_3(\cos 2\theta_\chi \bar{\chi}_l \chi_l - \cos 2\theta_\chi \bar{\chi}_h \chi_h - \sin 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \\ + \phi_1(\sin 2\theta_\chi \bar{\chi}_l \chi_l - \sin 2\theta_\chi \bar{\chi}_h \chi_h + \cos 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \Big] \\ + \frac{y_{\chi\phi'}}{2} \Big[\phi'_3(\cos 2\theta_\chi \bar{\chi}_l \chi_h - \cos 2\theta_\chi \bar{\chi}_h \chi_h - \sin 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \\ + \phi'_1(\sin 2\theta_\chi \bar{\chi}_l \chi_l - \sin 2\theta_\chi \bar{\chi}_h \chi_h + \cos 2\theta_\chi (\bar{\chi}_l \chi_h + \bar{\chi}_h \chi_l)) \Big]$$

Gauge interactions

In our scenario Φ_3 mix with SM Higgs To avoid direct detection constraint $\theta_{\chi} \sim \pi/4$

$$\mathcal{L} \supset \frac{g_D}{2} \left(\cos 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_l - \sin 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_h - \sin 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_l - \cos 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_h \right) X_{\mu}^3 + \frac{g_D}{2} \left(\sin 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_l + \cos 2\theta_{\chi} \bar{\chi}_l \gamma^{\mu} \chi_h + \cos 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_l - \sin 2\theta_{\chi} \bar{\chi}_h \gamma^{\mu} \chi_h \right) X_{\mu}^1 + i \frac{g_D}{2} \left(\bar{\chi}_h \gamma^{\mu} \chi_l - \bar{\chi}_l \gamma^{\mu} \chi_h \right) X_{\mu}^2 + e c_W \chi_1 X_{\mu}^1 J_{EM}^{\mu} + e c_W \chi_3 X_{\mu}^3 J_{EM}^{\mu},$$

 $J_{EM}^{\mu} = \sum_{f_{SM}} Q_{f_{SM}} \bar{f}_{SM} \gamma^{\mu} f_{SM}$, Relic density is determined by gauge interaction

Relic density of dark matter

DM relic density is explained by the processes:

Relic density is determined by parameters:

$$\{m_{X_1}, m_{X_3}, g_D, m_{\chi_l}, m_{\chi_h}, \chi_1, \theta_{\chi}\}$$

Here we chose θ_χ = π/4 to suppress DM-Nucleon scattering via scalar portal
 To suppress X₁ portal DM-Nucleon scattering χ₁ ~ 10⁻⁴

Relic density of dark matter

Computed by micrOMEGAs

> DM DM \rightarrow X₁X₁, X₂X₂ can explain relic density

> S-channel process via X_1 exchange require fine tuning due to small χ_1

Parameter region satisfying: $0.11 < \Omega h^2 < 0.13$ Gauge coupling is smaller when DM DM $\rightarrow X_2 X_2$ is open

Constraint from Higgs decay

SM Higgs can decay into dark gauge bosons via scalar mixing

Dark gauge boson can decay into SM leptons

Constraint from $h \rightarrow X_1 X_1 \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ search at the LHC

 $BR(h \to X_1 X_1) BR(X_1 \to \ell^+ \ell^-)^2 < 10^{-4}$

ATLAS, JHEP 1806 (2018) 166

Constraint from Higgs decay

Gauge coupling and scalar mixing should be small when the decay mode is kinematically allowed

Extra scalar production via Higgs mixing

Extra scalar boson production by gluon fusion

Scalar Decay mode: $\Phi_1 \rightarrow X_1 X_1, X_2 X_2, \chi_h \chi_l$

3. Phenomenology

Extra scalar production via Higgs mixing

Collider signature depending on mass relations

Summary and discussion

Construction of model with dark SU(2) model

 \diamond Z₂ symmetry as a subgroup of SU(2)

OM candidate is Dirac fermion in dark sector

OM interaction with SM through kinetic mixing

Application to DM phenomenology

♦ Relic density of DM

Constraints from direct detection

Collider signature; Higgs boson decay to dark sector

Collider signature via extra scalar production