Precision hyperon physics at BESIII

Hai-Bo Li (李海波)

Institute of High Energy Physics, CAS

The NCTS Dark Physics Workshop, Jan. 9-11, 2020,

National Tsing Hua University, Hsinchu, Taiwan

Beijing Electron-Positron Collider II (BEPCII)

BESIII Detector

Physics at τ-charm Energy Region

10 years data taking at BESIII

Data sets collected so far include,

- \succ 10×10⁹ J/ψ events
- \succ 0.5×10⁹ ψ' events
- Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV

130 energy points, about 2.0 fb⁻¹

Large data sets for XYZ study above 4.0 GeV about 12 fb⁻¹

Unique da	ta sets at	open	charm [•]	thresho	d
onique da		. open s	Charm	un cono	iu.

\sqrt{s} / GeV	$\mathcal{L}/\mathrm{fb}^{-1}$	
3.77	2.93	DD
4.008	0.48	DD^* , $\psi(4040)$, $D_{\rm S}^+D_{\rm S}^-$
4.18	3.2	$D_{s}D_{s}^{*}$
4.6	0.59	$\Lambda_c^+ \bar{\Lambda}_c^-$
19-08-16		

6

Roadmap of CP violation in flavored hadrons

- In 1964, the first CPV was discovered in Kaon;
- In 2001, CPV in B was established by two B-factories;
- In 2019, CPV discovered in D meson: 10⁻⁴, 10⁸ reconstructed D mesons (LHCb)
- All are consistent with CKM theory in the Standard model
- But no evidence was found in baryon system?

Baryon asymmetry of the Universe means that there must be non-SM CPV source.

CPV in hyperon decays, # events we need?

Why Hyperon physics at BESIII?

10 billion J/psi events collected

- > Large BRs in J/ψ decays
- Quantum correlated pair productions
- Background free

Hai-Bo Li, arXiv:1612.01775 A. Adlarson, A. Kupsc, arXiv:1908.03102

9

B 1 11

			Detection	
Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B~(imes 10^6)$	Efficiency	Number of reconstructed
$J/\psi \to \Lambda \bar{\Lambda}$	1.61 ± 0.15	16.1 ± 1.5	40%	4500 X 10 ³
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9	25%	600 X 10 ³
$J/\psi \rightarrow \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4	24%	640 X 10 ³
$J/\psi \rightarrow \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5		
$J/\psi \rightarrow \Sigma(1385)^- \bar{\Sigma}(1385)^+$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2		
$J/\psi \rightarrow \Xi^0 \Xi^0$	1.20 ± 0.24	12.0 ± 2.4	14%	670 X 10 ³
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0	19%	810 X 10 ³
$J/\psi \rightarrow \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4		
$J/\psi \rightarrow \Xi (1530)^- \bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5		
$\psi(2S_{j_{9}},\overline{\Omega}^{+},\overline{\Omega}^{+})$	0.05 ± 0.01	0.15 ± 0.03		

Advantage at e⁺e⁻ machine

Known initial 4-momentum Strongly boosted Substantial polarization Decay with neutron & $\pi^0 \ll$ Decay with invisibles

Both hyperons can be reconstructed, and the systematic uncertainties are under control.

Example CPV in $\Lambda \rightarrow p\pi^- (\Lambda \rightarrow p\pi^+)$ -- assume CPV is in P-wave --

α, β and γ parameters for hyperon decays

19-08-16

12

CPV observables

PRD 34,833 1986 hep-ph/991023v1 hep-ph/0002210

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue

Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the *CP*-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of *CP* nonconservation.

CPV observables

PRD 34,833 1986 hep-ph/991023v1 hep-ph/0002210

decay rate difference

$$\Delta \Gamma = \frac{\Gamma_{\overline{p}\pi^+} - \Gamma_{p\pi^-}}{\Gamma} \approx \sqrt{2} \begin{pmatrix} T_{\frac{\gamma_2}{\gamma_2}} \\ T_{\frac{\gamma_2}{\gamma_2}} \end{pmatrix} \sin \Delta_s \sin \phi_{CP}$$

$$\leftarrow$$
 T_{3/2(1/2)}: Ispin=3/2 (1/2) ampl & $\Delta_s = \delta_{3/2} - \delta_{1/2}$

decay asymmetry difference

final-state

difference

polarization

$$\alpha_{\mp} = \pm \frac{2\operatorname{Re}(S^{\ast}P)}{|S|^{2} + |P|^{2}} = \pm \frac{2|S||P|\cos(\Delta_{S} \pm \phi_{CP})}{|S|^{2} + |P|^{2}}$$

$$\Delta \alpha = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\sin\Delta_{S}\sin\phi_{CP}}{\cos\Delta_{S}\cos\phi_{CP}} = \tan\Delta_{S}\tan\phi_{CP} \quad \textbf{(for } \Lambda \rightarrow p\pi, \text{ need measurement of } \Delta_{\pm} = \delta_{5} - \delta_{P}$$

$$\beta_{\mp} = \pm \frac{2\operatorname{Im}(S^{\ast}P)}{|S|^{2} + |P|^{2}} = \pm \frac{2|S||P|\sin(\Delta_{5} \pm \phi_{CP})}{|S|^{2} + |P|^{2}}$$

$$\Delta \beta = \frac{\beta_{-} + \beta_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\cos\Delta_{S}\sin\phi_{CP}}{\cos\Delta_{S}\cos\phi_{CP}} = \tan\phi_{CP} \quad \textbf{(strong phase cancels out}}$$

$$\frac{\beta_{-} - \beta_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\sin\Delta_{S}\cos\phi_{CP}}{\cos\Delta_{S}\cos\phi_{CP}} = \tan\Delta_{S} \quad \textbf{(measures the strong phase} \quad \textbf{(strong phase cancels out}}$$

From Sandip

Constraints from Kaon decays

CPV measurement in Kaon system strongly constrains NP in S-waves, but no P-waves. Thus, searches of CPV in hyperon are complementary to those with Kaons.

Entangled hyperon pairs

To determine parameters:

$$\alpha(\Lambda \to p\pi^{-}) = \alpha_{-}$$
$$\alpha(\bar{\Lambda} \to \bar{p}\pi^{+}) = \alpha_{+}$$
$$\alpha(\bar{\Lambda} \to \bar{n}\pi^{0}) = \bar{\alpha}_{0}$$
$$\alpha(\Lambda \to n\pi^{0}) = \alpha_{0}$$

Kang, Li, Lu, Phys.Rev. D81 (2010) 051901

$$|\Lambda\bar{\Lambda}\rangle^{C=-1} = \chi_1 \frac{1}{\sqrt{2}} [|\Lambda\rangle|\bar{\Lambda}\rangle - |\bar{\Lambda}\rangle|\Lambda\rangle],$$

 Δ = complex phase between $A_{\frac{1}{2}\frac{1}{2}}$ and $A_{\frac{1}{2}\frac{1}{2}\frac{1}{2}}$

$$\frac{d|\mathcal{M}|^2}{d\cos\theta} \propto (1 + \alpha_{J/\psi}\cos^2\theta), \quad \text{with} \quad \alpha_{J/\psi} = \frac{|A_{1/2,-1/2}|^2 - 2|A_{1/2,1/2}|^2}{|A_{1/2,-1/2}|^2 + 2|A_{1/2,1/2}|^2}$$

17

if $\Delta \neq 0$, Λ and $\overline{\Lambda}$ are transversely polarized

Polarization is:

perpendicular to the production plane

 $\theta_{\Lambda}\text{-dependent}$

Same direction for Λ and $\overline{\Lambda}$

Correlated 5-dim. angular distribution

 $\mathcal{W}(\xi; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = 1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$

Fit results

20

BESIII results with 1.3 billion J/ψ

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	_
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶
$\bar{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-

$$\frac{\alpha_{+}}{\overline{\alpha}_{0}} = \frac{1 + \frac{1}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right)}{1 - \sqrt{2} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right)} \approx 1 + \left(\frac{1}{\sqrt{2}} + \sqrt{2} \right) \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) = 1 + \frac{3}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right)$$
$$\frac{\alpha_{+}}{\overline{\alpha}_{0}} - 1 = 0.087 \pm 0.030 = \frac{3}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \implies \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) = 0.041 \pm 0.014$$

Nature Physics 15,631-634 2019 arXiv:1808.08917

Only one-tenth of the data used

1) 3x precision improvement
 -same data sample-

← 2) ~7♂ upward shift from all previous measurements

← 3) ~3♂ difference from 1.
← Is this reasonable?

← Indicates $\Delta I = \frac{3}{2}$ contribution?

Help to understand $\Delta I = \frac{1}{2}$ puzzle? $\frac{|T_{\Delta I=3/2}|}{|T_{\Delta I=1/2}|} \sim \frac{1}{22}$

$\alpha_{+}/\overline{\alpha}_{0} \neq 1: \Delta I = 1/2$ law violation

lifetime=12 ns $\Delta I=1/2 \text{ law: } K^+ \rightarrow \pi^+ \pi^0 (\Delta I=3/2 \text{ transition}): \Gamma(K^+ \rightarrow \pi^+ \pi^0) = |T_{3/2}|^2 \approx Bf(K^+ \rightarrow \pi^+ \pi^0)/\tau_{K^+}$ $K_{s} \rightarrow \pi^{+}\pi^{-} (\Delta I = 1/2 \text{ transition}): \Gamma(K_{s} \rightarrow \pi^{+}\pi^{-}) = |T_{1/2}|^{2} \approx Bf(K_{s} \rightarrow \pi^{+}\pi^{-})/\tau_{Ks}$ lifetime=0.21 ns $\frac{\left|T_{\frac{3}{2}}\right|}{\left|T_{\frac{1}{2}}\right|} \approx \frac{\sqrt{Bf(K^{+} \to \pi^{+}\pi^{0})\tau_{KS}}}{\sqrt{Bf(K_{S} \to \pi^{+}\pi^{-})\tau_{KL}}} = \sqrt{\frac{0.21 \times 0.1 \text{ns}}{0.69 \times 12 \text{ns}}} \approx \frac{1}{22}$ $\left\langle \overline{\Lambda} \middle| \overline{p} \pi^+ \right\rangle = T_{\frac{1}{2}} \left(1 + \frac{1}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \right) \Longrightarrow \alpha_+ = \alpha_{\Delta I = \frac{1}{2}} \left(1 + \frac{1}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \right)$ $\left\langle \overline{\Lambda} \middle| \overline{n} \pi^0 \right\rangle = T_{\frac{1}{2}} \left(1 - \sqrt{2} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \right) \Longrightarrow \overline{\alpha}_0 = \alpha_{\Delta I = \frac{1}{2}} \left(1 - \sqrt{2} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \right)$ good agreement $\frac{\alpha_{+}}{\overline{\alpha}_{0}} = \frac{1 + \frac{1}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}}\right)}{1 - \sqrt{2} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}}\right)} \approx 1 + \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right) \left(T_{\frac{3}{2}} / T_{\frac{1}{2}}\right) = 1 + \frac{3}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}}\right)$ $\frac{\alpha_{+}}{\overline{\alpha}} - 1 = 0.087 \pm 0.030 = \frac{3}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) \implies \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right) = 0.041 \pm 0.014$ 19-08-22

VALUE		EVTS	DOCUME		TECN	V	COMMENT	PDG2010 upda
0.750 ±0.009 ±0).004	420k	ABLIKIM	2018A0	G BES3	1	J/ψ to $\Lambda\overline{\Lambda}$	PDGZ019 upua
•••We do not u	use the followi	ng data for averages	s, fits, limits, etc. • • •				,	
0.584 <u>+</u> 0.046		8500	ASTBURY	r 1975	SPEC	;		
0.649 ±0.023		10325	CLELAND) 1972	OSP	(
0.67 ±0.06		3520	DAUBER	1969	HBC		From <i>Ξ</i> decay	
0.645 ±0.017		10130	OVERSET	TH 1967	OSP	< C	Λ from $π^- p$	
0.62 <u>+</u> 0.07		1156	CRONIN	1963	CNTF	1	Λ from $π^- p$	
References:								
ABLIKIM	2018AG	arXiv:1808.08917						
ASTBURY	1975	NP B99 30	Measurement of th Parameters P, A, a	e Differential Cros and <i>R</i> in the Backw	s Sectio vard Pea	n and the S k of _π − _P –	Spin Correlation $K^0\Lambda$ at 5 GeV/c	
CLELAND	1972	NP B40 221	A Measurement of Hyperon	the β -Parameter i	n the Ch	arged Non	eptonic Decay of the Λ^0	
DAUBER	1969	PR 179 1262	Production and De	cay of Cascade H	yperons			
OVERSETH	1967	PRL 19 391	Time Reversal Inva	ariance in <u>A</u> Decay	/			
α_+ FOR	$\overline{\Lambda} \to \overline{p}\pi^+$			0%			INSPIRE search	
VALUE		EVTS	DO	CUMENT ID		TECN	COMMENT	
-0.758 ±0.010) <u>+0.007</u>	420k	ABL	IKIM 2	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$	
•••We do no	t use the follo	wing data for avera	ges, fits, limits, etc.				,	
-0.755 ±0.083	3 ±0.063	<mark>≈ 8.7k</mark>	ABL	IKIM 2	2010	BES	$J/\psi \to \Lambda \overline{\Lambda}$	
-0.63 ±0.13		770	TIXI	IER 1	988	DM2	$J/\mu\mu \rightarrow \Lambda\overline{\Lambda}$	
References	s:							
ABLIKIM		2018AG	arXiv:1808.08917					
		2010	DR D91 012002					
		2010		Measurement of $\overline{p}\pi^+$	the Asy	mmetry Pa	rameter for the Decay $\Lambda \rightarrow$	
TIXIER 19-08-10	6	1988	PL B212 523	Looking at CP In Decay	variance	and Quan	tum Mechanics in $J/\psi \to \Lambda \overline{\Lambda}$	

$\alpha_{-} \operatorname{FOR} \Lambda \rightarrow p\pi^{-}$

INSPIRE search

news & views

PARTICLE PHYSICS

Anomalous asymmetry

A measurement based on quantum entanglement of the parameter describing the asymmetry of the Λ hyperon decay is inconsistent with the current world average. This shows that relying on previous measurements can be hazardous.

Ulrik Egede

New input for many other measurements:

- 1) polarization
- 2) Asymmetry of the Λ_b and Λ_c
- 3) CPV in Λ_b and Λ_c decays
- 4) Decays of other charmed and beauty baryons

$J/\psi \rightarrow \Sigma^+(\rightarrow p\pi^0) \overline{\Sigma}^-(\rightarrow \overline{p}\pi^0)$

50 year-old measurements

α_0 FOR Σ^+	$\rightarrow p\pi^0$	DOCUMENT ID	
-0.980+0.017 -0.980-0.015	OUR FIT	DOCOMENTID	
-0.980 ^{+0.017} -0.013	OUR AVERAGE		
$-0.945 \substack{+0.055 \\ -0.042}$	1259	¹⁵ LIPMAN	73
-0.940 ± 0.045	16k	BELLAMY	72
$-0.98 \begin{array}{c} +0.05 \\ -0.02 \end{array}$	1335	¹⁶ HARRIS	70
-0.999 ± 0.022	32k	BANGERTER	69

 $\alpha_0 \approx 1 \Rightarrow$ S-wave \approx P-wave

interference is maximum well suited for $\alpha_0 + \overline{\alpha}_0 / \alpha_0 - \overline{\alpha}_0$

if the Σ^+ s are polarized

 $J/\psi and \psi(2S) \rightarrow \Sigma^+ \overline{\Sigma}^- (\Sigma^+ \rightarrow p\pi^0, \overline{\Sigma}^- \rightarrow \overline{p}\pi^0)$

To be submitted to PRL

Both J/ ψ and $\psi(2S)$ are polarized

Preliminary $\Sigma^+ \rightarrow p\pi^0$ results

-- based on 1.3B J/ψ events --

should reach 1% level with the full BESIII J/ ψ event sample 19-08-16

Monochromatic collision: factor of 10 from reduction of e⁺e⁻ CM spread

Future J/ψ factory

BESIII collected 10 billion **J**/ψ Current technology "Topup" $\times 2$ + "improved technology "monochromatic collision" $\times 10$ + Someday with new facility (J/ψ factory) $\times 100$

 $10^{13} J/\psi$ per year at a super J/ψ factory

10 Billions of hyperon pairs produced

Billion of hyperon pairs reconstructed

CPV: $10^{-4} - 10^{-5}$

Challenge the SM

CP violation with 10 billion J/ψ , and future facilities

CP test:	$A_{A} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} + \alpha_{+}}$
	$\alpha_{-} - \alpha_{+}$
$A_{\Lambda} = -0.0$	06 ± 0.012± 0.007

DC	CΠ	
DC	С	

 $J/\psi
ightarrow \Lambda\overline{\Lambda}$

	Events	Error A_{Λ}		
BESIII(2018)	4.2 ⋅10 ⁵	1.2· 10 ⁻²	1.31 10 ⁹ J/ψ	
BESIII	3 ·10 ⁶	5 ·10 ⁻³	10 ¹⁰ J/ψ L=0.47 · 10 ³³ Δ $E = 0.9$ MeV	
SuperTauCharm	6 · 10 ⁸	3 ·10 ⁻⁴	L=10 ³⁵ cm ⁻² s ⁻¹ 2. 10 ¹² J/ $\psi \Delta E = 0.9$ MeV	Buess
SuperTauCharm + reduced ∆E	3 · 10 ⁹	1.4· 10 ⁻⁴	L=10 ³⁵ cm ⁻² s ⁻¹ 10 ¹³ J/ ψ $\Delta E < 0.9$ MeV??	

$$\begin{array}{l} -3 \times 10^{-5} \leq A_{\Lambda} \leq 4 \times 10^{-5} \\ -2 \times 10^{-5} \leq A_{\Xi} \leq 1 \times 10^{-5} \\ -5 \times 10^{-5} \leq A_{\Xi\Lambda} \leq 5 \times 10^{-5} \end{array}$$
CKM
Tandean, Valencia PRD67, 056001

 $\sigma(A_{\Lambda}) = \frac{\sqrt{1+\varrho}}{\sqrt{2}\alpha_{\Lambda}}\sigma(\alpha_{\Lambda})$

Super-charm Factory

How about other weakly decaying hyperons?

final state baryon polarization measurements impractical with BESIII

 $\Sigma^{-} \rightarrow n\pi^{-}$

CPV observables in $\Xi^- \rightarrow \Lambda \pi$ decay

decay rate difference

 $\frac{\Gamma_{\Lambda\pi^{+}} - \Gamma_{\Lambda\pi^{-}}}{\Gamma} \equiv 0$

• $\Lambda \pi$ final states are purely Ispin=1, only ΔI=1/2 transitions allowed, no ΔI=3/2 transition possible

decay asymmetry difference

$$\alpha_{\mp} = \pm \frac{2\operatorname{Re}(S^*P)}{|S|^2 + |P|^2} = \pm \frac{2|S||P|\cos(\Delta_S \pm \varphi_{CP})}{|S|^2 + |P|^2}$$

$$\frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\sin\Delta_S \sin\phi_{CP}}{\cos\Delta_S \cos\phi_{CP}} = \tan\Delta_S \tan\phi_{CP}$$

is measureable (see below)

final-state polarization difference

Σ-?

40~50 year-old measurements, probably wrong for the same reason the Λ measurements were wrong

$\alpha_{\approx} 0 \rightarrow 1$ partial wave dominates

interference is small not well suited for $\alpha_+\alpha_+/\alpha_--\alpha_+$ measurements

no measurements of $\bar{\alpha}_{+}$ for $\overline{\Sigma}^{+}$

single dominant decay mode no suitable for $\Lambda\Gamma$ measurements

α_{-} FOR $\Sigma^{-} \rightarrow n\pi^{-}$							
VALUE	<u>EVTS</u>	DOCUMENT ID					
-0.068 ± 0.008 OUR	AVERAGE						
-0.062 ± 0.024	28k	HANSL	78				
-0.067 ± 0.011	60k	BOGERT	70				
-0.071 ± 0.012	51k	BANGERTER	69				

Σ^- DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ1	$n\pi^{-}_{-}$	(99.848±0.005) %

Ω-?

$\alpha \text{ FOR } \Omega^- \rightarrow \Lambda K^-$							
Some early results ha	ve been om	itted.					
VALUE	EVTS	DOCUMENT ID					
0.0180±0.0024 OUR AV	ERAGE						
$+0.0207\pm0.0051\pm0.0081$	960k	⁷ CHEN	05				
$+0.0178\!\pm\!0.0019\!\pm\!0.0016$	4.5M	⁷ LU	05A				
$\begin{array}{c} \alpha \text{ FOR } \Omega^{-} \rightarrow \Xi^{0} \pi^{-} \\ \xrightarrow{VALUE} \\ +0.09 \pm 0.14 \\ \alpha \text{ FOR } \Omega^{-} \rightarrow \Xi^{-} \pi^{-} \end{array}$	<u>–</u> 1630 .0	<u>document id</u> BOURQUIN	84				
VALUE	EVTS	DOCUMENT ID					
+0.05±0.21	614	BOURQUIN	84				
	Ω_	DECAY MOI	DES				

	Mode	Fraction (Γ _i /Γ)
Γ ₁	ΛK^-	(67.8±0.7) %
Γ2	$\Xi^0 \pi^-$	(23.6±0.7) %
Г3	$\Xi^{-}\pi^{0}$	(8.6±0.4) %

 $\alpha \approx 0 \rightarrow 1$ partial wave dominates all modes

interference is small, not well suited for $\alpha + \overline{\alpha}/\alpha - \overline{\alpha}$ measurements

$\Gamma(\Xi^0\pi^-) \approx 3 \times \Gamma(\Xi^-\pi^0) \bigstar T_{3/2} \approx$	T _{1/2}
$\Delta\Gamma$ will be enhanced	

Hyperon decays

Rare and forbidden decays

Front. Phys. 12(5), 121301 (2017) DOI 10.1007/s11467-017-0691-9

Per	SPECTIVE			Decay mode	Current data	Sensitivity	r
				-	$\mathcal{B}(\times 10^{-6})$	B(90%C.I	$(\times 10^{-6})$ Type
	Prospects	for rare and for	rbidden hyperon	$\Lambda \rightarrow ne^+e^-$ $\Sigma^+ \rightarrow ne^+e^-$	- < 7	< 0.8 < 0.4	
		decays at BE	SIII	$\Xi^{0} \to \Lambda e^{+}e^{-}$ $\Xi^{0} \to \Sigma^{0}e^{+}e^{-}$	7.6 ± 0.6	< 1.2	EM penguin
		Hai-Bo Li ^{1,2,†}		$\Xi^- \to \Sigma^- e^+ e^-$	-	< 1.0	Tupe A
SM	â	of High Energy Physics, Beij demy of Sciences thor E-mail: ¹ li	iing 100049, China , Beijing 100049, China bh@ihen.ac.cn	$\Sigma^+ \to p\mu^+\mu^-$	$(0.09^{+0.09}_{-0.08})$	< 0.4	Type A
	γŞ	7, 2017; accepted	May 8, 2017 ometer III (BESIII) is proposed t	$\frac{\Lambda \to \pm \mu \mu}{\Lambda \to n\nu\bar{\nu}}$	-	< 0.3 < 0.4	Weak penguin
	s WW, c, t	d pairs, which pro- About 10^6-10^4 h the proposed branching fraction	wide a pristine experimental envir ³ hyperons, i.e., Λ , Σ , Ξ , and Ω , data samples at BESIII. Based c ons of the hyperon decays is in th ue", rare	$\begin{array}{c} \Xi^{0} \to \Lambda \nu \bar{\nu} \\ \Sigma^{0} \Xi^{0} \to \Sigma^{0} \nu \bar{\nu} \\ \Xi^{-} \to \Sigma^{-} \nu \bar{\nu} \end{array}$	- -	< 0.8 < 0.9	Type B
_	$B_i \rightarrow B_f \gamma$	\mathcal{B} (×10 ⁻³)	αγ	$\frac{\Delta \ell}{\Sigma^- \to \Sigma^+ e^- e^-}$	-	< 1.0	
_	$\Lambda ightarrow n\gamma$	1.75 ± 0.15	—	$\Sigma^- \rightarrow p e^- e^-$ $\Xi^- \rightarrow p e^- e^-$	-	< 0.6 < 0.4	Neutrinoless
	$\Sigma^+ \rightarrow p\gamma$	1.23 ± 0.05	-0.76 ± 0.08	$\begin{array}{c} \Xi^- \to \Sigma^+ e^- e^- \\ \Omega^- \to \Sigma^+ e^- e^- \end{array}$	-	< 0.7 < 15.0	double beta decays
	$\Sigma^{\circ} \rightarrow n\gamma$ $\Xi^{0} \rightarrow \Lambda\gamma$	$-$ 1.17 \pm 0.07	-0.70 ± 0.07	$\Sigma^- o p\mu^-\mu^-$ $\Xi^- o p\mu^-\mu^-$	- < 0.04	< 1.1 < 0.5	Type C
	$\Xi^0 \rightarrow \Sigma^0 \gamma$	3.33 ± 0.10	-0.69 ± 0.06	$\Omega^- \to \Sigma^+ \mu^- \mu^-$ $\Sigma^- \to p e^- \mu^-$	-	< 17.0 < 0.8	
	$\varXi^-\to\varSigma^-\gamma$	0.127 ± 0.023	1.0 ± 1.3	$\Xi^- \to p e^- \mu^-$ $\Xi^- \to \Sigma^+ e^- \mu^-$	-	< 0.5	l_1 / l_2
_	$\varOmega^-\to \Xi^-\gamma$	< 0.46 (90% C.L.)	-	$\frac{\Delta}{\Omega^-} \rightarrow \Sigma^+ e^- \mu^-$	-	< 17.0	$-B_A$ η B_B

FCNC: radiative decays

Most of them never studied.

Search for rare decay and New physics

JT, arXiv:1901.10447 [JHEP 04 (2019) 104] G Li, JY Su, JT, arXiv:1905.08759

 $\mathcal{B}(\Sigma^+ \to pN_2\bar{N}_3) < 3.5 \times 10^{-6}$,

 $\mathcal{B}(\Xi^0 \to \Sigma^0 N_2 \bar{N}_3) < 2.6 \times 10^{-6},$

 $\mathcal{B}(\Omega^- \to \Xi^- N_2 N_3) < 1.5 \times 10^{-4}.$

arXiv:19

SM predictions:

$\Lambda ightarrow n u ar{ u}$	$\Sigma^+ \to p \nu \bar{\nu}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar{ u}$	$\Xi^-\to \Sigma^- \nu \bar{\nu}$	$\Omega^- ightarrow \Xi^- u ar{ u}$
$7.1 imes10^{-13}$	$4.3 imes10^{-13}$	$6.3 imes10^{-13}$	$1.0 imes10^{-13}$	$1.3 imes 10^{-13}$	$4.9 imes10^{-12}$

$\mathcal{B}(\Lambda \rightarrow n \mathbb{N}_2 \overline{\mathbb{N}}_3)$	<	1.3×10^{-5} ,
$\mathcal{B}(\Xi^0 \to \Lambda N_2 \bar{N}_3)$	<	$1.9\times 10^{-6},$
$\mathcal{B}(\Xi^- \to \Sigma^- N_2 N_3)$	<	$3.2\times 10^{-6},$

Sensitivities from BESIII 10 billion J/ 1/

ivities from BESIII 10 billion J/ ψ			J	Y Su, Jusak Tan	dean
$\Lambda ightarrow n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar{ u}$	$\Omega^- ightarrow \Xi^- u ar{ u}$	
$3 imes 10^{-7}$	4×10^{-7}	$8 imes 10^{-7}$	$9 imes 10^{-7}$	$2.6 imes10^{-5}$	-

Semileptonic decays

Fully reconstruct one of the hyperons, then the momentum of the other hyperon will be known, which provides hyperon beam, so we can look for invisible final states:

- neutrino ; other invisible particles

Decay mode	$\mathcal{B}(imes 10^{-4})$	$ \Delta S $	$g_1(0)/f_1(0)$
$\Lambda \to p e^- \bar{\nu}_e$	8.32 ± 0.14	1	0.718 ± 0.015
$\Sigma^+ \to \Lambda e^+ \nu_e$	0.20 ± 0.05	0	_
$\Sigma^- ightarrow ne^- \bar{\nu}_e$	10.17 ± 0.34	1	-0.340 ± 0.017
$\Sigma^- ightarrow \Lambda e^- \bar{\nu}_e$	0.573 ± 0.027	0	_
$\Sigma^- ightarrow \Sigma^0 e^- \bar{\nu}_e$	_	0	_
$\Xi^0 \rightarrow \Sigma^+ e^- \bar{\nu}_e$	2.52 ± 0.08	1	1.210 ± 0.050
$\Xi^-\to \Lambda e^-\bar\nu_e$	5.63 ± 0.31	1	0.250 ± 0.050
$\Xi^-\to \Sigma^0 e^- \bar\nu_e$	0.87 ± 0.17	1	_
$\Xi^-\to \Xi^0 e^- \bar\nu_e$	< 23 (90% C.L.)	0	_
$\varOmega^-\to \Xi^0 e^- \bar\nu_e$	56 ± 28	1	_

$$e^+e^- \to J/\psi \to \Lambda\bar{\Lambda}$$

19-08-16

-

Semileptonic decays: V_{us}

V_{us} measurements are inconsistent:

between KI3 and KI2 decays and tau decays.

N. Cabibbo, E. Swallon, R. Winston Ann.Rev.Nucl.Part.Sci. 53:39-75,2003

19-08-16

arXiv:1909.12524 HFLAV group 2018

Decay	Rate	g_1/f_1	V_{us}
Process	(μsec^{-1})		
$\Lambda ightarrow pe^-\overline{ u}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	0.2367 ± 0.0099
$\Xi^0 \to \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined			0.2250 ± 0.0027

Advantage: data near to the thresholds

- **Baryon pair productions near thresholds:** precision branching fractions, unique access to the relative phase, test of QCD;
- Hyperon and charmed baryon Spin polarization in quantum productions;

σ_{pp}(s) [pb]

1000

500

0

2

Form-factors in the time-like production

BES

FENICE

PS170

²/ndf=0.5863

E760

DM2

BESIII 2019

SIII 2015

BaBar(Tagged)

2.5

Best precision on *σ*: 3% (systematic dominant)

CMD3

BaBar(unTagged)

CP violation with quantum-correlated pair productions of hyperons and charmed baryon

section(pb)

10

 e^{-}

Cross

3

√s[GeV]

BESIII 2015

BESIII 2012

Access to the heavier charmed baryons

45

Summary

Hyperons are a laboratory for strong interaction, baryon structure and symmetry studies. BESIII provides huge amount quantum-correlated hyperon pairs!

Summary

Hyperon polarization in J/ ψ (ψ ') decays \rightarrow new way to study CPV

- ightarrow complementary to CPV studies with Kaons
- \rightarrow BESIII as already rewritten the PDG book for Λ decays
- \rightarrow about to do the same for Ξ / Σ^+ decays
- ightarrow good opportunities for $\Delta \alpha$ measurements with Σ^+

 $\rightarrow \Sigma^-$ and Ω CPV measurements are probably hard

Charmed baryon

CPV can be accessed via both decay parameters and T-odd observables STCF will play an important role on the search for CPV in charmed baryon with quantum correlated data near the production threshold!

Hyperon physics at BESIII & STCF: next new frontier for CPV studies!

Some of my slides from Steve Olsen, Andrzej Kupscs, Sandip PAKVASA

2019年7月8-9日复旦大学 Hyperon physics https://indico.ihep.ac.cn/event/9834/overview

Thank you !

BESIII achievements

More than 280 papers published or submitted so far, 30% at PRL

Highlights:

- Precision tau mass from BESIII
- Charmonium and XYZ spectroscopy : Zc(3900), X(3872) ...
- Light hadron & searches of exotics: X(1835), X(ppbar)...
- Precision charm physics: decay constant, form factors, |Vcs|, |Vcd|
- Access to amplitudes of quantum-correlated D⁰ decays: relative strong phases
- Charmed baryon production at threshold: Λ_c production and decay
- Probe EM structures of baryons: G_E , G_M of proton, neutron and hyperons
- Hyperon-anti-hyperon pairs: asymmetry parameters, CP Violation, and polarizations of hyperons

10 years data taking at BESIII

Data sets collected so far include,

- $> 10 \times 10^9 J/\psi$ events
- \succ 0.5×10⁹ ψ' events
- Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV

130 energy points, about 2.0 fb⁻¹

Large data sets for XYZ study above 4.0 GeV about 12 fb⁻¹

Unique da	ta sets at	open	charm [•]	thresho	d
onique da		. open s	Charm	un cono	iu.

\sqrt{s} / GeV	$\mathcal{L}/\mathrm{fb}^{-1}$	
3.77	2.93	DD
4.008	0.48	DD^* , $\psi(4040)$, $D_{\rm S}^+D_{\rm S}^-$
4.18	3.2	$D_{s}D_{s}^{*}$
4.6	0.59	$\Lambda_c^+ \bar{\Lambda}_c^-$
19-08-16		

Energy and luminosity upgrades

Energy upgrades

 \succ currently, E $_{\text{beam}}^{\text{max}}$ =2.3 GeV limited by power supply, cooling of magnets

- upgrade I: E max beam = 2.35 GeV , done in summer shutdown in 2019
- ▶ upgrade II: $E_{\text{beam}}^{\text{max}}$ =2.45 GeV, need to rebuild SePtum magnets (2020) access to the $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_c$, $\Lambda_c \bar{\Sigma}_c$, $\Sigma_c \bar{\Sigma}_c$, $\Xi_c \bar{\Xi}_c$?

Future luminosity upgrades

- \rightarrow improvement of beam power: more bunches with stable running \rightarrow a factor of 2 or 3
- try crab-waist : a factor of 10 times gain on the luminosity?

CPV in charmed baryon

X.W. Kang, HBL, G.R. Lu and A. Datta Int.J.Mod.Phys. A26 (2011) 2523

CPV from asymmetry parameters:

$\langle A_{\rm CP}^{(X)} \rangle = \frac{\alpha_Y^{(X)} + \alpha_{\bar{Y}}^{(\bar{X})}}{\alpha_Y^{(X)} - \alpha_{\bar{z}}^{(\bar{X})}}$	$\Lambda_c \to BV$	Br	Eff. (ϵ)	Expected errors at BES-III $(\times 10^{-2})$
<i>YY</i>	$\Lambda \rho^+ \to (p\pi^-)(\pi^+\pi^0)$	$3.2 imes 10^{-2*}$	0.65	0.44
Iriple product asymmetry:	$\Sigma(1385)^+\rho^0 \rightarrow (\Lambda\pi^+)(\pi^+\pi^-)$	$2.4 imes 10^{-3}$	0.69	1.55
$\langle A_T \rangle = \frac{N(C_T > 0) - N(C_T < 0)}{N(C_T > 0) + N(C_T < 0)}$	$\Sigma^+ \rho^0 \rightarrow (p \pi^0) (\pi^+ \pi^-)$	$0.7 imes10^{-2*}$	0.62	0.96
$N(C_T > 0) + N(C_T < 0)$	$\Sigma^+\omega \to (p\pi^0)(\pi^+\pi^-\pi^0)$	$1.4 imes 10^{-2}$	0.49	0.76
$\langle \bar{A}_T \rangle = \frac{N(C_T > 0) - N(C_T < 0)}{N(\bar{Q} > 0) + N(\bar{Q} > 0)}$	$\Sigma^+\phi \to (p\pi^0)(K^+K^-)$	$0.8 imes 10^{-3}$	0.52	3.10
$N(C_T > 0) + N(C_T < 0)$	$\Sigma^+ K^{*0} \to (p\pi^0)(K^-\pi^+)$	$0.7 imes10^{-3}$	0.57	3.17
$C_T = (\vec{p}_X \times \vec{p}_\pi) \cdot \vec{p}_{\bar{X}}$				

$$\mathcal{A}_T = \frac{1}{2} \left[\langle A_T \rangle + \langle \bar{A}_T \rangle \right] = \langle A_T \rangle \neq 0$$

Sensitivities of CPV from triple products: 2.3 million Λ_c pairs at BESIII 2.0 billion Λ_c pairs at STCF : $10^{-3} - 10^{-4}$

$T_{3/2}$ ≠ 0: decay rate asymmetry in BESIII?

use *partial* reconstruction of $J/\psi \rightarrow \Lambda \Lambda$?

Can BESIII measure this with low systematic errors?

$$\frac{Bf\left(\Lambda \to n\pi^{0}\right)}{Bf\left(\Lambda \to p\pi^{-}\right)} - \frac{Bf\left(\overline{\Lambda} \to \overline{n}\pi^{0}\right)}{Bf\left(\overline{\Lambda} \to \overline{p}\pi^{+}\right)} = \frac{N\left(\overline{\Lambda}_{tag} + \pi^{0}\right)}{N\left(\overline{\Lambda}_{tag} + \pi^{-}\right)} - \frac{N\left(\Lambda_{tag} + \pi^{0}\right)}{N\left(\Lambda_{tag} + \pi^{+}\right)}$$

Decay rate asymmetry in BESIII

using partially reconstructed J/ $\psi \rightarrow \Lambda \Lambda$ events --

$$\frac{Bf\left(\Lambda \to n\pi^{0}\right)}{Bf\left(\Lambda \to p\pi^{-}\right)} - \frac{Bf\left(\overline{\Lambda} \to \overline{p}\pi^{0}\right)}{Bf\left(\overline{\Lambda} \to \overline{p}\pi^{+}\right)} = \frac{\Gamma_{n\pi^{0}}}{\Gamma_{p\pi^{-}}} - \frac{\Gamma_{\pi\pi^{0}}}{\Gamma_{p\pi^{+}}} = \frac{\Gamma_{n\pi^{0}}\Gamma_{\overline{p}\pi^{+}} - \Gamma_{\overline{n}\pi^{0}}\Gamma_{p\pi^{-}}}{\Gamma_{p\pi^{-}}\Gamma_{\overline{p}\pi^{+}}} \approx 2\left(1 + \sqrt{2}\right) \left(\frac{T_{3/2}}{T_{3/2}}\right) \sin \Delta_{s} \sin \phi_{CP}$$

sensitivity is nominally reduced by a factor of ~5

here I used:

$$\begin{split} & \Gamma_{p\pi^{-}} \approx \left| T_{\frac{1}{2}} \right|^{2} + \sqrt{2} \left| T_{\frac{1}{2}} \right| \left| T_{\frac{3}{2}} \right| \cos(\Delta_{s} + \phi_{CP}) \\ & \Gamma_{n\pi^{0}} \approx \frac{1}{2} \left| T_{\frac{1}{2}} \right|^{2} - \left| T_{\frac{1}{2}} \right| \left| T_{\frac{3}{2}} \right| \cos(\Delta_{s} + \phi_{CP}) \\ & \Gamma_{\overline{p}\pi^{-}} \approx \left| T_{\frac{1}{2}} \right|^{2} + \sqrt{2} \left| T_{\frac{1}{2}} \right| \left| T_{\frac{3}{2}} \right| \cos(\Delta_{s} - \phi_{CP}) \\ & \Gamma_{\overline{n}\pi^{0}} \approx \frac{1}{2} \left| T_{\frac{1}{2}} \right|^{2} - \left| T_{\frac{1}{2}} \right| \left| T_{\frac{3}{2}} \right| \cos(\Delta_{s} + \phi_{CP}) \end{split}$$

same data would be useful for an $\alpha_0 + \alpha_0 / \alpha_0 - \alpha_0$ measurement

2) Why the big change in α ?

Why different?

from: Kiyoshi Tanida JAEA Japan

• Multiple scattering:

- E.g., at 95 MeV with 3 cm scatterer (target), θ_0 becomes as large as 1.5 degree.
 - \rightarrow 5 degree multiple scattering occurs with a probability of 1 % order and dominates over single scattering
- Actual scatterer thickness is even larger
- Of course, analyzing power for multiple Coulomb scattering is almost 0
 - ightarrow Can explain the difference
- Note: effective A_N depends on target thickness
 - This is why target thickness is explicit in the new data.
 - We have to be careful!!

轻子数和重子数破坏的寻找

 $\Xi^0 \rightarrow M^+ l^-$

 $\Xi^0 \rightarrow M^- l^+$

 $\Xi^0 \rightarrow K_S \nu$

Front. Phys. 12(5), 121301 (2017) DOI 10.1007/s11467-017-0691-9

Perspective

Prospects for rare and forbidden hyperon decays at BESIII

Hai-Bo Li^{1,2,†}

¹Institute of High Energy Physics, Beijing 100049, China ²University of Chinese Academy of Sciences, Beijing 100049, China Corresponding author. E-mail: [†]lihb@ihep.ac.cn Received April 17, 2017, accepted May 8, 2017

The study of hyperon decays at the Beijing Electron Spectrometer III (BES tigate the events of J/ψ decay into hyperon pairs, which provide a pristine e at the Beijing Electron–Positron Collider II. About 10^{6} – 10^{8} hyperons, i.e., produced in the J/ψ and $\psi(2S)$ decays with the proposed data samples at samples, the measurement sensitivity of the branching fractions of the hyper of 10^{-5} – 10^{-8} . In addition, with the known center-of-mass energy and "tag and decays with invisible final states can be probed.

Keywords BESIII, J/ψ decay, hyperon, rare decay, FCNC, lepton flavor

neter III (BES de a pristine e nyperons, i.e.,	Decay mode	Current data $\mathcal{B} (\times 10^{-6}) (90\% \text{ C.L.})$	Sensitivity $\mathcal{B}(\times 10^{-6})$
ata samples at as of the hyper nergy and "tag	$\Lambda \to M^+ l^-$	< 0.4–3.0 [68]	< 0.1
lepton flavor v	$\Lambda \to M^- l^+$	< 0.4 – 3.0 [68]	< 0.1
	$\Lambda \to K_S \nu$	< 20 [68]	< 0.6
	$\varSigma^+ \to K_S l^+$	_	< 0.2
	$\varSigma^- \to K_S l^-$	_	< 1.0
	$\varXi^- \to K_S l^-$	_	< 0.2

BESIII的敏感度

< 0.1

< 0.1

< 2.0

 $\Delta L \Delta B$

-1

-1

-1

-1

-1

-1

-1

-1

+1 -1

+1

-1

+1

-1

+1

+1

+1

-1

BEPCII luminosity optimized for $\psi(3770)$ running

A factor of 2 gain for lattice optimized at J/ψ running

58

Gain on integrated luminosity from "Topup" injection

30% gain on the integrated luminosity

12 injections every 12 hours

单色对撞模式

单色模式概念,垂直位置的质心能量

上	高能量电子	E+ ε → ← E - ε 低能量正电子
中	理想能量电子	E→← E 理想能量正电子
下	低能量电子	E-ε→← E+ε 高能量正电子

对撞质心能量:

 $E_{CM} = 2E_{e^-}E_{e^+} + 2m_e^2c^4 + 2\sqrt{E_{e^-}^2 - m_e^2c^4}\sqrt{E_{e^+}^2 - m_e^2c^4}cos(\theta)$ 头对头对撞时 $\theta = 0$, $cos(\theta) = 1$, $E_{e^-} = E(1 + \epsilon_{e^-})$, $E_{e^+} = E(1 + \epsilon_{e^+})$, ϵ_{e^-} , ϵ_{e^+} 为两束流能量偏差的相对值, 假设: $E_{e^-} \sim E_{e^+} \sim E$

$$E_{CM} = 2E\sqrt{1 + \epsilon_{e^-}}\sqrt{1 + \epsilon_{e^+}} \sim 2E\sqrt{1 + \epsilon_{e^-}} + \epsilon_{e^+}$$

如果 $\epsilon_{e^-} = -\epsilon_{e^+}$ 束流质心能量散度为零.

单色对撞模式

实际情况下,对撞点处束流有一个分布(不是质点),不同粒子的位置(垂直方向)

y*=σ_y*+σ_ε×D_y* (*:表示对撞点)

这里 σ_{y}^{*} : 垂直尺寸的分布 (= $\sqrt{\beta_{y}^{*}\varepsilon_{y}}$), β_{y}^{*} 为对撞点振幅函数, ε_{y} 为垂直方向发射度。

σ_s:能散的分布,D_y*:垂直色散函数 束流的分布会使质心系能散增加,但束流尺寸越小,质心系能散也会越小。 这对J/ψ很窄的共振峰通道的事例率提高意义很大 事例率提高因子是

$$\lambda = \sqrt{1 + \frac{D_y^{*2}\sigma_{\varepsilon}^2}{\beta_y^*\varepsilon_y}}$$

λ通常可以设计到大于10

$e^+e^- \rightarrow p\bar{p}$ at threshold

2M_p

-> 12.5 keV (Bohr-levels)

mp

$e^+e^- \rightarrow n\bar{n}$ (or $\Lambda\bar{\Lambda}$) at threshold

Integrated cross section: $\sigma_{n\bar{n}}(m_{n\bar{n}}) = \frac{4\pi\alpha^2\beta C}{3m_n^2} |G_{eff}(m_{n\bar{n}})|^2 (1+1/2\tau)$

Isospin singlet, π -exchange not allowed - Λ - $\overline{\Lambda}$ molecule is unlikely