Decays of charmed and strange hadrons shining light on dark photons

Jusak Tandean NCTS

Based on Jhih-Ying Su & JT, arXiv:1911.13301 & ongoing work

NCTS Dark Physics Workshop National Center for Theoretical Sciences, Hsinchu, Taiwan

11 January 2020

Outline

Introduction

- □ Flavor-changing neutral current (FCNC) decays of hadrons induced by $q \rightarrow q' \overline{\gamma}$ with a massless dark photon ($\overline{\gamma}$) emitted invisibly.
 - Strange hadron decays
 - > Charmed hadron decays.
- Conclusions

FCNC decays of hadrons with missing energy

- Flavor-changing neutral current (FCNC) transitions, q → q'∉, with missing energy (∉) have suppressed rates in the standard model (SM)
- New physics (NP) beyond the SM could modify the SM contribution and/or induce new channels with one or more invisible particles, possibly enhancing the rates significantly relative to the SM expectations.
- If large enough, the potential NP effects would likely be testable by near-future or even ongoing experiments searching for FCNC hadron decays with missing energy.

FCNC decays of hadrons with missing energy

- Flavor-changing neutral current (FCNC) transitions, q → q'∉, with missing energy (∉) have suppressed rates in the standard model (SM)
- New physics (NP) beyond the SM could modify the SM contribution and/or induce new channels with one or more invisible particles, possibly enhancing the rates significantly relative to the SM expectations.
- If large enough, the potential NP effects would likely be testable by near-future or even ongoing experiments searching for FCNC hadron decays with missing energy.
- Of interest here are the decays of hadrons induced by $s \rightarrow d\not\!\! E \& c \rightarrow u\not\!\! E$.
 - The missing energy may be carried away by one or more invisible particles.

- If the SM is extended with the addition of a dark sector having an unbroken U(1) gauge group, its associated gauge field and that of the SM U(1) can be defined such that
 - > one of their gauge bosons, the dark photon $(\overline{\gamma})$, only sees the dark sector
 - the ordinary photon couples to both the SM and the dark sector, the latter with reduced strength.

- If the SM is extended with the addition of a dark sector having an unbroken U(1) gauge group, its associated gauge field and that of the SM U(1) can be defined such that
 - > one of their gauge bosons, the dark photon $(\overline{\gamma})$, only sees the dark sector
 - > the ordinary photon couples to both the SM and the dark sector, the latter with reduced strength.
- The dark photon does not couple directly to SM particles, but can still interact with them via higher-dimensional operators induced by loops involving new particles.

- If the SM is extended with the addition of a dark sector having an unbroken U(1) gauge group, its associated gauge field and that of the SM U(1) can be defined such that
 - > one of their gauge bosons, the dark photon $(\overline{\gamma})$, only sees the dark sector
 - > the ordinary photon couples to both the SM and the dark sector, the latter with reduced strength.
- The dark photon does not couple directly to SM particles, but can still interact with them via higher-dimensional operators induced by loops involving new particles.
- □ Of interest here are the FCNC quark transitions $s \rightarrow d\overline{\gamma}$ and $c \rightarrow u\overline{\gamma}$ with the massless dark photon appearing as missing energy.
- If their couplings are sufficiently large, they may give rise to FCNC decays of hadrons with missing energy which are potentially discoverable at ongoing or near-future experiments.

FIG. 6. Parameter space for dark photons (A') with mass $m_{A'} > 1$ MeV (see Fig. 7 for $m_{A'} < 1$ MeV). Shown are existing 90% confidence level limits from the SLAC and Fermilab beam dump experiments E137, E141, and E774 [116–119] the electron and muon anomalous magnetic moment a_{μ} [120–122], KLOE [123] (see also [124]), WASA-at-COSY [125], the test run results reported by APEX [126] and MAMI [127], an estimate using a BaBar result [116, 128, 129], and a constraint from supernova cooling [116, 130, 131]. In the green band, the A' can explain the observed discrepancy between the calculated and measured muon anomalous magnetic moment [120] at 90% confidence level. On the right, we show in more detail the parameter space for larger values of ϵ . This parameter space can be probed by several proposed experiments, including APEX [132], HPS [133], DarkLight [134], VEPP-3 [135, 136], MAMI, and MESA [137]. Existing and future e^+e^- colliders such as *BABAR*, BELLE, KLOE, Super*B*, BELLE-2, and KLOE-2 can also probe large parts of the parameter space for $\epsilon > 10^{-4} - 10^{-3}$; their reach is not explicitly shown.

Massive dark photon

- Massive dark photon couplings to SM fermions $\epsilon e A'_{\mu} J^{\mu}_{\rm EM}$

- Constraints from kaon decays
 - $\succ K \rightarrow \pi A'$
 - > $K \rightarrow \mu v A'$
- Massless dark photons evade the above constraints because of no direct couplings to SM fermions
 - > $K \rightarrow \pi \bar{\gamma}$ forbidden by angular momentum conservation

Flavor-SU(3) octet of spin-1/2 baryons & decuplet of spin-3/2 baryons

st Interactions of on-shell massless dark photon with d and s quarks

$$\mathcal{L}_{dsar{\gamma}} \,=\, -\overline{d}\sigma^{\mu
u}(\mathbb{C}+\gamma_5\mathbb{C}_5)sar{B}_{\mu
u}\,+\, ext{H.c.}$$

 $\mathbb{C} \& \mathbb{C}_5$ are constants which depend on the NP model details, $\bar{B}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}$ is the dark photon's field strength tensor, and $\sigma^{\mu\nu} = (i/2)[\gamma^{\mu}, \gamma^{\nu}].$

st Interactions of on-shell massless dark photon with d and s quarks

$$\mathcal{L}_{dsar{\gamma}} \,=\, -\overline{d}\sigma^{\mu
u}(\mathbb{C}+\gamma_5\mathbb{C}_5)sar{B}_{\mu
u}\,+\, ext{H.c.}$$

 $\mathbb{C} \& \mathbb{C}_5$ are constants which depend on the NP model details, $\bar{B}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}$ is the dark photon's field strength tensor, and $\sigma^{\mu\nu} = (i/2)[\gamma^{\mu}, \gamma^{\nu}].$

* $\mathcal{L}_{ds\bar{\gamma}}$ induces hyperon decays $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with $\overline{\gamma}$ emitted as missing energy and $\mathfrak{B}\mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-, \Omega^- \Xi^-$

st Interactions of on-shell massless dark photon with d and s quarks

$$\mathcal{L}_{dsar{\gamma}} \,=\, -\overline{d}\sigma^{\mu
u}(\mathbb{C}+\gamma_5\mathbb{C}_5)sar{B}_{\mu
u}\,+\, ext{H.c.}$$

 Σ^+

 $\mathbb{C} \& \mathbb{C}_5$ are constants which depend on the NP model details, $\bar{B}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}$ is the dark photon's field strength tensor, and $\sigma^{\mu\nu} = (i/2)[\gamma^{\mu}, \gamma^{\nu}].$

* $\mathcal{L}_{ds\bar{\gamma}}$ induces hyperon decays $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with $\overline{\gamma}$ emitted as missing energy and $\mathfrak{BB}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-, \Omega^- \Xi^-$

* To find the amplitudes requires knowing the matrix elements $\langle \mathfrak{B}' | \overline{d} \sigma^{\mu\nu} s | \mathfrak{B} \rangle$.

st Interactions of on-shell massless dark photon with d and s quarks

$$\mathcal{L}_{dsar{\gamma}} \,=\, -\overline{d}\sigma^{\mu
u}(\mathbb{C}+\gamma_5\mathbb{C}_5)sar{B}_{\mu
u}\,+\, ext{H.c.}$$

 Σ^+

 $\mathbb{C} \& \mathbb{C}_5$ are constants which depend on the NP model details, $\bar{B}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}$ is the dark photon's field strength tensor, and $\sigma^{\mu\nu} = (i/2)[\gamma^{\mu}, \gamma^{\nu}].$

* $\mathcal{L}_{ds\bar{\gamma}}$ induces hyperon decays $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with $\overline{\gamma}$ emitted as missing energy and $\mathfrak{BB}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-, \Omega^- \Xi^-$

Decay rates

* Decay rate $\Gamma(\mathfrak{B} o \mathfrak{B}' \overline{\gamma}) = rac{\mathcal{C}^2_{\mathfrak{B}'\mathfrak{B}} (m_{\mathfrak{B}}^2 - m_{\mathfrak{B}'}^2)^3 m_{\mathfrak{B}'}}{2\pi \, m_{\mathfrak{B}}^4} (|\mathbb{C}|^2 + |\mathbb{C}_5|^2)$

$\mathfrak{B}'\mathfrak{B}$	$n\Lambda$	$p\Sigma^+$	$\Lambda \Xi^0$	$\Sigma^0 \Xi^0$	$\Sigma^{-}\Xi^{-}$	$\Xi^-\Omega^-$
$\mathcal{C}^2_{\mathfrak{B}'\mathfrak{B}}$	$\frac{3}{2}$	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{25}{18}$	$\frac{25}{9}$	$\frac{4}{3}$

Gilman & Wise, 1978

Decay mode	$\Lambda \to n\overline{\gamma}$	$\Sigma^+ \to p\overline{\gamma}$	$\Xi^0 \to \Lambda \overline{\gamma}$	$\Xi^0\to\Sigma^0\overline{\gamma}$	$\Xi^- \to \Sigma^- \overline{\gamma}$	$\Omega^-\to \Xi^-\overline{\gamma}$
$rac{\mathcal{B}}{ \mathbb{C} ^2}\left(\mathrm{GeV}^2 ight)$	2.75×10^{12}	1.54×10^{11}	4.95×10^{11}	1.12×10^{12}	1.32×10^{12}	5.18×10^{12}

The branching fractions \mathcal{B} of $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ divided by $|\mathbb{C}|^2$.

Decay rates

* Decay rate
$$\Gamma(\mathfrak{B} o \mathfrak{B}' \overline{\gamma}) = rac{\mathcal{C}^2_{\mathfrak{B}'\mathfrak{B}} (m_\mathfrak{B}^2 - m_{\mathfrak{B}'}^2)^3 m_{\mathfrak{B}'}}{2\pi \, m_\mathfrak{B}^4} (|\mathbb{C}|^2 + |\mathbb{C}_5|^2)$$

$\mathfrak{B}'\mathfrak{B}$	$n\Lambda$	$p\Sigma^+$	$\Lambda \Xi^0$	$\Sigma^0 \Xi^0$	$\Sigma^{-}\Xi^{-}$	$\Xi^-\Omega^-$
$\mathcal{C}^2_{\mathfrak{B}'\mathfrak{B}}$	$\frac{3}{2}$	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{25}{18}$	$\frac{25}{9}$	$\frac{4}{3}$

Gilman & Wise, 1978

Decay mode	$\Lambda \to n\overline{\gamma}$	$\Sigma^+ \to p\overline{\gamma}$	$\Xi^0\to\Lambda\overline{\gamma}$	$\Xi^0\to\Sigma^0\overline{\gamma}$	$\Xi^- \to \Sigma^- \overline{\gamma}$	$\Omega^-\to \Xi^-\overline{\gamma}$
$rac{\mathcal{B}}{ \mathbb{C} ^2}\left(\mathrm{GeV}^2 ight)$	2.75×10^{12}	1.54×10^{11}	4.95×10^{11}	1.12×10^{12}	1.32×10^{12}	5.18×10^{12}

The branching fractions \mathcal{B} of $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ divided by $|\mathbb{C}|^2$.

■ How large \mathbb{C} and \mathbb{C}_5 may be depends on the NP model.

2 different examples of NP scenarios

* In Scenario I the $ds\overline{\gamma}$ coupling constant $\mathbb{C} = \frac{e_D \xi}{64\pi^2 \tilde{\Lambda}}$

 e_D is the dark photon's coupling, $\tilde{\Lambda}$ the NP effective heavy mass scale,

 ξ contains Yukawa couplings of the new particles and SM quarks.

Fabbrichesi, Gabrielli, Mele, PRL 2017

These Yukawa couplings are most constrained by kaon-mixing data $\Delta m_K^{
m NP} = 8.47 imes 10^{-13} \, {
m TeV}^3 \, \xi^2 / { ilde \Lambda}^2 < 0.3 \Delta m_K^{
m exp}$

With $\alpha_D = e_D^2/(4\pi) = 0.1$, this implies $|\mathbb{C}| < 2.0 \times 10^{-9} \text{ GeV}^{-1}$

2 different examples of NP scenarios

* In Scenario I the $ds\overline{\gamma}$ coupling constant $\mathbb{C} = \frac{e_D \xi}{64\pi^2 \tilde{\Lambda}}$

 e_D is the dark photon's coupling, $\tilde{\Lambda}$ the NP effective heavy mass scale,

 $\boldsymbol{\xi}$ contains Yukawa couplings of the new particles and SM quarks.

These Yukawa couplings are most constrained by kaon-mixing data $\Delta m_K^{
m NP} = 8.47 imes 10^{-13} \, {
m TeV}^3 \, \xi^2 / ilde{\Lambda}^2 < 0.3 \Delta m_K^{
m exp}$

With $\alpha_D = e_D^2/(4\pi) = 0.1$, this implies $|\mathbb{C}| < 2.0 \times 10^{-9} \text{ GeV}^{-1}$

* In Scenario II the $ds\overline{\gamma}$ coupling constant is relatively less restricted by kaon-mixing data, resulting in $|\mathbb{C}| < 1.6 \times 10^{-8} \text{ GeV}^{-1}$

Fabbrichesi & Gabrielli, 1911.03755

2 different examples of NP scenarios

* In Scenario I the $ds\overline{\gamma}$ coupling constant $\mathbb{C} = \frac{e_D \xi}{64\pi^2 \tilde{\Lambda}}$

 e_D is the dark photon's coupling, $\tilde{\Lambda}$ the NP effective heavy mass scale,

 $\boldsymbol{\xi}$ contains Yukawa couplings of the new particles and SM quarks.

These Yukawa couplings are most constrained by kaon-mixing data $\Delta m_K^{
m NP} = 8.47 imes 10^{-13} \, {
m TeV}^3 \, \xi^2 / ilde{\Lambda}^2 < 0.3 \Delta m_K^{
m exp}$

With $\alpha_D = e_D^2/(4\pi) = 0.1$, this implies $|\mathbb{C}| < 2.0 \times 10^{-9} \text{ GeV}^{-1}$

* In Scenario II the $ds\overline{\gamma}$ coupling constant is relatively less restricted by kaon-mixing data, resulting in $|\mathbb{C}| < 1.6 \times 10^{-8} \text{ GeV}^{-1}$

* Prediction: $\mathcal{B}(K^+ \to \pi^+ \pi^0 \overline{\gamma}) \lesssim 1.0 \times 10^{-5}$, potentially testable by NA62.

Fabbrichesi & Gabrielli, 1911.03755

Predictions of 2 different NP scenarios

Decay mode	$\Lambda o n \overline{\gamma}$	$\Sigma^+ o p \overline{\gamma}$	$\Xi^0 o \Lambda \overline{\gamma}$	$\Xi^0 ightarrow \Sigma^0 \overline{\gamma}$	$\Xi^- ightarrow \Sigma^- \overline{\gamma}$	$\Omega^- o \Xi^- \overline{\gamma}$
$\mathcal{B}_{\max}[I]$	$1.1 imes10^{-5}$	$6.0 imes10^{-7}$	$1.9 imes10^{-6}$	$4.3 imes10^{-6}$	$5.1 imes10^{-6}$	$2.0 imes10^{-5}$
$\mathcal{B}_{\max}[II]$	$6.7 imes10^{-4}$	$3.8 imes10^{-5}$	$1.2 imes10^{-4}$	$2.7 imes10^{-4}$	$3.3 imes10^{-4}$	$1.3 imes10^{-3}$

Maximal branching fractions of $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with the $|\mathbb{C}|$ values in Scenarios I and II. Su & JT, 1911.13301

Predictions of 2 different NP scenarios

Decay mode	$\Lambda o n \overline{\gamma}$	$\Sigma^+ o p \overline{\gamma}$	$\Xi^0 o \Lambda \overline{\gamma}$	$\Xi^0 o \Sigma^0 \overline{\gamma}$	$\Xi^- ightarrow \Sigma^- \overline{\gamma}$	$\Omega^- o \Xi^- \overline{\gamma}$
$\mathcal{B}_{\max}[I]$	$1.1 imes10^{-5}$	$6.0 imes10^{-7}$	$1.9 imes10^{-6}$	$4.3 imes10^{-6}$	$5.1 imes10^{-6}$	$2.0 imes10^{-5}$
$\mathcal{B}_{\max}[II]$	$6.7 imes10^{-4}$	$3.8 imes10^{-5}$	$1.2 imes10^{-4}$	$2.7 imes10^{-4}$	$3.3 imes10^{-4}$	$1.3 imes10^{-3}$

Maximal branching fractions of $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with the $|\mathbb{C}|$ values in Scenarios I and II.

Su & JT, 1911.13301

Some of these numbers may be probed by BESIII

Estimated BESIII sensitivity for branching fractions

HB Li, 1612.01775

$\Lambda ightarrow n u ar{ u}$	$\Sigma^+ o p u ar{ u}$	$\Xi^0 o \Lambda u ar{ u}$	$\Xi^0 o \Sigma^0 u ar u$	$\Xi^- ightarrow \Sigma^- u ar{ u}$	$\Omega^- ightarrow \Xi^- u ar{ u}$
$3 imes 10^{-7}$	$4 imes 10^{-7}$	$8 imes 10^{-7}$	$9 imes 10^{-7}$		$2.6 imes10^{-5}$

Predictions of 2 different NP scenarios

Decay mode	$\Lambda o n \overline{\gamma}$	$\Sigma^+ o p \overline{\gamma}$	$\Xi^0 o \Lambda \overline{\gamma}$	$\Xi^0 o \Sigma^0 \overline{\gamma}$	$\Xi^- ightarrow \Sigma^- \overline{\gamma}$	$\Omega^-\to \Xi^-\overline{\gamma}$
$\mathcal{B}_{\max}\left[\mathrm{I} ight]$	$1.1 imes 10^{-5}$	$6.0 imes10^{-7}$	$1.9 imes10^{-6}$	$4.3 imes10^{-6}$	$5.1 imes10^{-6}$	$2.0 imes10^{-5}$
$\mathcal{B}_{\max}[II]$	$6.7 imes10^{-4}$	$3.8 imes10^{-5}$	$1.2 imes10^{-4}$	$2.7 imes10^{-4}$	$3.3 imes10^{-4}$	$1.3 imes10^{-3}$

Maximal branching fractions of $\mathfrak{B} \to \mathfrak{B}'\overline{\gamma}$ with the $|\mathbb{C}|$ values in Scenarios I and II.

Su & JT, 1911.13301

HB Li, 1612.01775

Some of these numbers may be probed by BESIII

Estimated BESIII sensitivity for branching fractions

- But already the current hyperon data (PDG 2019) have started to constrain Scenario II
 - Indirect (2\$\sigma\$) upper limits on the branching fractions of yet-unobserved decay modes of \$\Lambda\$, \$\Sigma\$^+\$, \$\Sigma\$^0\$, \$\Sigma\$^-\$, and \$\Omega\$^-\$, are \$1.4\%\$, \$8.0 \times 10^{-3}\$, \$3.4 \times 10^{-4}\$, 8.3 \times 10^{-4}\$, and \$1.6\%\$, respectively.

• Interactions of on-shell massless dark photon with u and c quarks

 $\mathcal{L}_{ucar{\gamma}} \,=\, -\overline{u}\sigma^{\mu
u}(\mathcal{C}+\gamma_5\mathcal{C}_5)car{B}_{\mu
u}\,+\, ext{H.c.}$

• This induces the FCNC decays of charmed hadrons with missing energy.

Interactions of on-shell massless dark photon with u and c quarks

 $\mathcal{L}_{ucar{\gamma}} \,=\, -\overline{u}\sigma^{\mu
u}(\mathcal{C}+\gamma_5\mathcal{C}_5)car{B}_{\mu
u}\,+\, ext{H.c.}$

• This induces the FCNC decays of charmed hadrons with missing energy.

• In an example of NP model $|\mathcal{C}| \lesssim 6.3 imes 10^{-8} ~{
m GeV^{-1}}$ Gabrielli *et al.*, 2016

Interactions of on-shell massless dark photon with u and c quarks

 $\mathcal{L}_{ucar{\gamma}} = -\overline{u}\sigma^{\mu
u}(\mathcal{C}+\gamma_5\mathcal{C}_5)car{B}_{\mu
u} + ext{H.c.}$

• This induces the FCNC decays of charmed hadrons with missing energy.

• In an example of NP model $|\mathcal{C}| \lesssim 6.3 \times 10^{-8} \ \mathrm{GeV^{-1}}$

Gabrielli et al., 2016

• Interactions of on-shell massless dark photon with u and c quarks

 $\mathcal{L}_{ucar{\gamma}} \,=\, -\overline{u}\sigma^{\mu
u}(\mathcal{C}+\gamma_5\mathcal{C}_5)car{B}_{\mu
u}\,+\, ext{H.c.}$

• This induces the FCNC decays of charmed hadrons with missing energy.

• In an example of NP model $|\mathcal{C}| \lesssim 6.3 \times 10^{-8} \ \mathrm{GeV^{-1}}$

Gabrielli et al., 2016

$${\cal B}(\Lambda_c^+ o p \overline{\gamma}) \,{\lesssim}\, 1.7 imes 10^{-4}$$

- Interactions of on-shell massless dark photon with u and c quarks $\mathcal{L}_{uc\bar{\gamma}} = -\overline{u}\sigma^{\mu\nu}(\mathcal{C} + \gamma_5 \mathcal{C}_5)c\bar{B}_{\mu\nu} + \text{H.c.}$
- This induces the FCNC decays of charmed hadrons with missing energy.
- In an example of NP model $|\mathcal{C}| \lesssim 6.3 imes 10^{-8} \ \mathrm{GeV^{-1}}$
- The corresponding predicted branching fractions can be significant

$$egin{aligned} \mathcal{B}(\Lambda_c^+ & op p\overline{\gamma}) &\lesssim 1.7 imes 10^{-4} & \Lambda_c^+ = u \, d \, c \ \mathcal{B}(D^+ & op \rho^+ \overline{\gamma}) &\lesssim 8.1 imes 10^{-4} & D^+ = c \overline{d}, \, D^0 = c \overline{u} \ \mathcal{B}(D^0 & op \omega \overline{\gamma}) &\lesssim 2.7 imes 10^{-4} & D_s^+ = c \overline{d}, \, D^0 = c \overline{u} \ \mathcal{B}(D_s^+ & op K^{*+} \overline{\gamma}) &\lesssim 3.8 imes 10^{-4} & D_s^+ = c \overline{s} \end{aligned}$$

Some of these may be detectable by Belle 2 or BESIII.

Gabrielli et al., 2016

Conclusions

- If massless dark photons exist, they do not couple at tree level to SM fermions but can still interact with them via higher-dimensional operators.
- In NP models, massless dark photons can have nonnegligible flavorchanging dipole-type interactions with the lightest down-type or uptype quarks.
- Such interactions can induce FCNC decays of charmed and strange hadrons with missing energy carried away by the dark photon.
- Their rates may be sufficiently significant to be discoverable in ongoing & near-future experiments at Belle II and BESIII.