Dark matter and small scale structure

Jinn-Ouk Gong

APCTP, Pohang 790-784, Korea

IWPPC2 Fo-Guang-Shan, Kaohsiung 10th October, 2014

590

Based on K.-Y. Choi, JG and C. S. Shin, in preparation

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0
Outling			
Outline			

Dark matter and small scale structure

3 Jinn-Ouk Gong

イロト イ団ト イヨト イヨト

590

Introduction	WIMPs	E-WIMPs	Conclusions
•0	00000	000	0
Why before BBN?			

Cosmic history seems to be well established:

- (Presumably) inflation
- Standard model particles through reheating
- Hierarchical structure formation

However we do not understand all the detail, especially ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	WIMPs	E-WIMPs	Conclusions
•0	00000	000	0
Why before BBN?			

Cosmic history seems to be well established:

- (Presumably) inflation
- Standard model particles through reheating
- Itierarchical structure formation

However we do not understand all the detail, especially ...

- Post-inflationary epoch before BBN, including reheating
- An important bridge between SM and BSM
- Typically includes thermal equilibrium interactions
- Model-dependent features are swept away
- No direct observational probe

Is there no way to study this dark age?

イロト 人間 トイヨト イヨト

Introduction	WIMPs	E-WIMPs	Conclusions
0•	00000	000	0
Why small so	cale structure?		

Nevertheless we can do something:

- Reheating sets a characteristic scale: the onset of standard RD
- Scales smaller than $k_{\rm RD}$ experiences non-thermal evolution
- Evolution of δ_m depends on thermal properties of DM
- Abundance of small scale structure depends on δ_m
- These objects (e.g. compact DM haloes) can be observed in various ways
- Q: How is the formation of small scale structure dependent on
- thermal properties of DM and
- Inon-thermal history before BBN?

イロト イポト イヨト イヨト

TATLE als later of a	fDM to conside		
00	00000	000	0
Introduction	WIMPs	E-WIMPs	Conclusions

Which kind of DM to consider?

We consider 2 DM species

- WIMPs
 - Initially in thermal equilibrium
 - Chemical decoupling (number density conserved) and freeze out when non-rel: $M/T_{\rm CD} \sim \mathcal{O}(20)$
 - Kinetic decoupling (no more energy/momentum exchange with thermal plasma) when $T_{\text{KD}} = \mathcal{O}(1 10) \text{ MeV}$
- 2 E-WIMPs
 - Not in thermal equilibrium due to small interactions
 - No chemical or kinetic decoupling

Evolution of δ_m crucially depends on these DM thermal properties

イロト イポト イヨト イヨト

Introduction	WIMPs	E-WIMPs	Conclusions
00	0000	000	0
Community of the			
Governing	nteractions for w	IMPS	

Consider a non-rel scalar ϕ (e.g. osc inflaton) is decaying into DM and radiation

$$\phi \rightarrow \begin{cases} \text{DM with branching ratio } f_m \\ \text{radiation with branching ratio } 1 - f_m \end{cases}$$

Governing eqs (BG and pert) can be derived from the Boltzmann eq with 3 interactions between non-rel scalar χ and radiation γ :

$\chi \leftrightarrow \gamma + \gamma$	(decay; $\chi = \phi$)
$\chi + \chi \leftrightarrow \gamma + \gamma$	(creation/annihilation; $\chi = WIMPs$)
$\chi + \gamma \leftrightarrow \chi + \gamma$	(scattering; $\chi = WIMPs$)

Interpreting ϕ , WIMPs and radiation as fluid components with $w_{\phi} = w_m = 0$ and $w_r = 1/3$ we can write the complete set of eqs

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction	WIMPs		E-WIMPs	Conclusions
00	00000		000	0
T. 1		1 .		

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ;

Dark matter and small scale structure

Jinn-Ouk Gong

nan

Introduction	WIMPs		E-WIMPs	Conclusions
00	00000		000	0
T. 1	.1	1 .		

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

• remain super-horizon even after reheating

Dark matter and small scale structure

Jinn-Ouk Gong

Introduction	WIMPs		E-WIMPs	Conclusions
00	00000		000	0
T. 1	.1	1 .		

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

- remain super-horizon even after reheating
- enter the horizon during RD after kinetic decoupling

n 1 (* *			
00	0000	000	0
Introduction	WIMPs	E-WIMPs	Conclusions

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

- remain super-horizon even after reheating
- enter the horizon during RD after kinetic decoupling
- enter the horizon during RD before kinetic decoupling

T 1 (* *	(1 1	•	
00	00000	000	0
Introduction	WIMPs	E-WIMPs	Conclusions

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

- remain super-horizon even after reheating
- enter the horizon during RD after kinetic decoupling
- enter the horizon during RD before kinetic decoupling
- enter the horizon before RD, i.e. when ϕ dominates (SD)

Trealection in a set the sum all conjugate				
00	00000	000	0	
Introduction	WIMPs	E-WIMPs	Conclusions	

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

- remain super-horizon even after reheating
- enter the horizon during RD after kinetic decoupling
- enter the horizon during RD before kinetic decoupling
- enter the horizon before RD, i.e. when ϕ dominates (SD)

Non-trivial shape of $\delta_m(k)$ dep on when a mode enters the horizon

Trealection in a set the sum all conjugate				
00	00000	000	0	
Introduction	WIMPs	E-WIMPs	Conclusions	

WIMPs are mainly produced from thermal plasma rather than direct decay of ϕ ; for pert, 4 different regimes: modes that...

- remain super-horizon even after reheating
- enter the horizon during RD after kinetic decoupling
- enter the horizon during RD before kinetic decoupling
- enter the horizon before RD, i.e. when ϕ dominates (SD)

Non-trivial shape of $\delta_m(k)$ dep on when a mode enters the horizon

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0

Formation of collapsed objects

Compact DM haloes within $\delta_{\min} \sim 10^{-3} \lesssim \delta_m \lesssim \delta_{\max} \sim 0.3$

• Seed mass of compact haloes of radius R = 1/(aH)

$$M_{i} = \frac{4\pi}{3} \rho_{m} H^{-3} \Big|_{aH=1/R} \approx 1.30 \times 10^{11} \left(\frac{\Omega_{m0} h^{2}}{0.112}\right) \left(\frac{R}{\text{Mpc}}\right)^{3} M_{\odot}$$

Mass of a compact halo today

$$M_0 = \frac{z_{\rm eq} + 1}{z + 1} M_i \bigg|_{z_{\rm eq} = 3600, z = 10} \approx 4 \times 10^{13} \left(\frac{R}{\rm Mpc}\right)^3 M_{\odot}$$

Solution of compact haloes with mass $\gtrsim M_0$ in Milky Way

$$f \equiv \frac{\Omega_{m0}}{\Omega_{m0} + \Omega_{b0}} \frac{M_0}{M_i} \beta(R) \text{ w/ } \beta(R) = \frac{1}{\sqrt{2\pi\sigma(R)}} \int_{\delta_{\min}}^{\delta_{\max}} d\delta_m e^{-\delta_m^2/[2\sigma^2(R)]}$$
$$\sigma^2(R) = \int_0^\infty \frac{dk}{k} W^2(kR) \mathscr{P}_{\delta}(k)$$

イロト イポト イヨト イヨト

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0
~ · · ·			

Constraints on primordial power spectrum

Thus 2 inputs to constrain the primordial power spectrum:

- determining δ_{\min} : value of δ_m at horizon entry which gives $\delta_m = \delta_c \approx 1.686$ at a given redshift z_c
- ② constraining $\sigma(R)$: from non-obs from e.g. Fermi-LAT

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0
C · · · ·	1. 1. 1		

Constraints on primordial power spectrum

Thus 2 inputs to constrain the primordial power spectrum:

- determining δ_{\min} : value of δ_m at horizon entry which gives $\delta_m = \delta_c \approx 1.686$ at a given redshift z_c
- ② constraining $\sigma(R)$: from non-obs from e.g. Fermi-LAT

 $\sigma_{\max}(k)$ is directly translated into the bound on the primordial power spectrum on small scales unconstrained by the CMB

Evolution with E-WIMPs

Perturbation in E-WIMPs follow standard evolution $(\Omega_{WIMP} : \Omega_{E-WIMP} = 1 : 2)$

nar

Evolution with E-WIMPs

Perturbation in E-WIMPs follow standard evolution $(\Omega_{WIMP} : \Omega_{E-WIMP} = 1 : 2)$

1

• • • • • • • • • • • • •

Perturbation in E-WIMPs follow standard evolution $(\Omega_{\text{WIMP}}: \Omega_{\text{E-WIMP}} = 1:2)$

Perturbations in WIMPs and E-WIMPs are different on small scales, and follow each other (c.f. δ_b follows δ_m after recombination)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Perturbation in E-WIMPs follow standard evolution $(\Omega_{WIMP} : \Omega_{E-WIMP} = 1 : 2)$

Perturbations in WIMPs and E-WIMPs are different on small scales, and follow each other (c.f. δ_b follows δ_m after recombination)

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0
Modified bounds			

Bound on $\sigma_{\max}(k)$ and correspondingly $\mathscr{P}_{\mathscr{R}}(k)$ is modified: somewhat milder...

N.B. This bound is obtained by considering total DM perturbation

QA

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	0
More to consider			

But we have not yet taken into account a few important issues:

- Free streaming of WIMPs: sharp cutoff at ~ 1 pc, below which δ_m is suppressed due to free streaming
- Gamma rays only from WIMPs: (non-)observation of gamma rays puts bound on WIMPs, not E-WIMPs
- Non-Gaussian distribution: sensitive to modifications at high tail region

$$\beta(R) = \frac{1}{\sqrt{2\pi}} \int_{v_{\min}}^{v_{\max}} dy \, e^{-y^2/2} \left[1 + \frac{w_s^{(3,0)}}{6} H_3(y) + \cdots \right]$$

where $w_s^{(3,0)} \approx 3 - 3.3 \times 10^{-4} f_{\text{NL}}$ and $H_3(x) = x^3 - 3x$

< ロ > < 同 > < 三 > < 三 > -

Introduction	WIMPs	E-WIMPs	Conclusions
00	00000	000	•
Conclusions			

- Formation of small scale structure formation depends on
 - thermal properties of DM: enhancement of δ_m on small scales
 - non-thermal history before BBN: SD, kinetic decoupling...
- Profile of δ_m at the onset of standard RD can be non-trivial
- Observations on compact haloes can constrain the primordial spectrum far beyond the scales constrained by the CMB

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >