Lepton flavor mixing from Δ(6n²) series and generalized CP

Gui-Jun Ding

Department of Modern Physics, University of Science and Technology of China

Based on the work arXiv:1409.8005 In collaboration with Stephen F. King, Thomas Neder

2nd International Workshop on particle Physics and Cosmology after Higgs and Plank, Oct. 10th, 2014, Fo-Guang Shan, Taiwan

Outline:

- Motivation for generalized CP symmetry
- Generalized CP transformation consistent with $\Delta(6n^2)$
- Lepton flavor mixing from $\Delta(6n^2)$ and generalized CP
- Summary

μτ reflection symmetry: a simple CP symmetry example

μτ exchange

μτ reflection=μτ exchange +canonical CP

This CP transformation is **not** a unit matrix.

μτ reflection symmetry: a simple CP symmetry example

μτ exchange

 $\mu\tau$ reflection= $\mu\tau$ exchange

If the neutrino mass matrix is invariant under the $\mu\tau$ reflection,

This CP transformation is **not** a unit matrix.

$$P_{23}^{T}m_{\nu}P_{23}=m_{\nu}^{*}$$

$$\frac{1}{2}\boldsymbol{v}_{a}^{T}\boldsymbol{C}^{-1}\boldsymbol{m}_{\boldsymbol{v},ab}\boldsymbol{v}_{b}$$

4

$$\sigma$$
 π s

It leads to

 $\theta_{23} = \frac{\pi}{4}, \quad \delta_{CP} = \pm \frac{\pi}{2}$ [P. Harrison, W.Scott, Phys.Lett. B547(2002) 219; W. Grimus, L. Lavoura, Phys.Lett. B579 (2004)113]

Our motivation: combining flavor symmetry and CP symmetry to predict both mixing angles and CP phases.

Definition of generalized CP(GCP) transformation

 $\varphi_i(x) \xrightarrow{\mathcal{CP}} X_{ij}\varphi_j^*(x_P)$

[W. Grimus et al., J. Phys. A 20 (1987) L807; G.Branco et al., Rev .Mod .Phys. 84,515(2012).]

X is a unitary matrix.

Combining GCP with flavor symmetry

"closure" relations have to hold!

Definition of generalized CP(GCP) transformation

 $\varphi_i(x) \xrightarrow{\mathcal{CP}} X_{ij}\varphi_j^*(x_P)$

[W. Grimus et al., J. Phys. A 20 (1987) L807; G.Branco et al., Rev .Mod .Phys. 84,515(2012).]

X is a unitary matrix.

Combining GCP with flavor symmetry

Definition of generalized CP(GCP) transformation

 $\varphi_i(x) \xrightarrow{\mathcal{CP}} X_{ij}\varphi_j^*(x_P)$

[W. Grimus et al., J. Phys. A 20 (1987) L807; G.Branco et al., Rev .Mod .Phys. 84,515(2012).]

X is a unitary matrix.

Combining GCP with flavor symmetry

•Further requirement: **physical** GCP transformations have to map each representation into the complex conjugate. Mathematically, mapping induced by X should be class-inverting automorphism $g' \sim g^{-1}$.

[M. Ratz et al., Nucl.Phys.B 883, 267(2014).]

Group theory of $\Delta(6n^2)$

 $\succ \Delta(6n^2)$ is a non-abelian finite subgroup of SU(3), it is isomorphic to $(Z_n \times Z_n) \rtimes S_3$. Its four generators satisfy:

$$a^{3} = b^{2} = (ab)^{2} = 1,$$

 $c^{n} = d^{n} = 1, \quad cd = dc,$
 $aca^{-1} = c^{-1}d^{-1}, \quad ada^{-1} = c, \quad bcb^{-1} = d^{-1}, \quad bdb^{-1} = c^{-1}$

Familiar examples: $\Delta(6 \times 1^2) \cong S_3$, $\Delta(6 \times 2^2) \cong S_4$

Irreducible representations : 1-dim, 2-dim, 3-dim, 6-dim.

$$a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$c = \begin{pmatrix} \eta & 0 & 0 \\ 0 & \eta^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta^{-1} \end{pmatrix}$$

$$\eta = e^{2\pi i/n}$$

> Automorphism group of $\Delta(6n^2)$

n	G_{f}	$\texttt{GAP-Id} \texttt{Out}(G_f)$		Num.
1	$\Delta(6) \equiv S_3$	[6,1]	Z_1	1
2	$\Delta(24) \equiv S_4$	[24, 12]	Z_1	1
3	$\Delta(54)$	[54,8]	S_4	0
4	$\Delta(96)$	[96,64]	Z_2	1
5	$\Delta(150)$	[150, 5]	Z_4	1
6	$\Delta(216)$	[216, 95]	S_3	0
7	$\Delta(294)$	[294,7]	Z_6	1
8	$\Delta(384)$	[384, 568]	K_4	1
9	$\Delta(486)$	[486,61]	$Z_3 \times S_3$	0
10	$\Delta(600)$	[600,179]	Z_4	1
11	$\Delta(726)$	[726, 5]	Z_{10}	1
12	$\Delta(864)$	[864,701]	D_{12}	0
13	$\Delta(1014)$	[1014,7]	Z_{12}	1
14	$\Delta(1176)$	[1176, 243]	Z_6	1
15	$\Delta(1350)$	[1350, 46]	$Z_4 \times S_3$	0
16	$\Delta(1536)$	[1536, 408544632]	$Z_4 \times Z_2$	1
17	$\Delta(1734)$	[1734, 5]	Z_{16}	1
18	$\Delta(1944)$	[1944,849]	$Z_3 \times S_3$	0
19	$\Delta(2166)$	[2166, 15]	Z_{18}	1

→ Num. = Number of class-inverting outer automorphism.

Physical CP transformations are
of the flavor symmetry group.class-inverting outer automorphisms
[M. Lindner et al., JHEP 1304, 122;
M. Ratz et al., Nucl.Phys.B 883, 267(2014).]

\blacktriangleright Automorphism group of $\Delta(6n^2)$

n	G_{f}	$GAP-Id \qquad Out(G_f)$		Num.
1	$\Delta(6) \equiv S_3$	[6,1] Z_1		1
2	$\Delta(24) \equiv S_4$	[24, 12]	Z_1	1
3	$\Delta(54)$	[54,8]	S_4	0
4	$\Delta(96)$	[96,64]	Z_2	1
5	$\Delta(150)$	[150, 5]	Z_4	1
6	$\Delta(216)$	[216,95]	S_3	0
7	$\Delta(294)$	[294,7]	Z_6	1
8	$\Delta(384)$	[384, 568]	K_4	1
9	$\Delta(486)$	[486, 61]	$Z_3 \times S_3$	0
10	$\Delta(600)$	[600,179]	Z_4	1
11	$\Delta(726)$	[726, 5]	Z_{10}	1
12	$\Delta(864)$	[864,701]	D_{12}	0
13	$\Delta(1014)$	[1014,7]	Z_{12}	1
14	$\Delta(1176)$	[1176, 243]	Z_6	1
15	$\Delta(1350)$	[1350, 46]	$Z_4 \times S_3$	0
16	$\Delta(1536)$	[1536, 408544632]	$Z_4 \times Z_2$	1
17	$\Delta(1734)$	[1734, 5]	Z_{16}	1
18	$\Delta(1944)$	[1944,849]	$Z_3 \times S_3$	0
19	$\Delta(2166)$	[2166, 15]	Z_{18}	1

→ Num. ≡ Number of class-inverting outer automorphism.

The Δ (6n²) group with $n \neq 3\mathbb{Z}$ admits a **unique** class-inverting outer automorphism (for another proof: C. Hagedorn et al, arXiv:1408.7118).

The unique automorphism *u* is:

$$a \xrightarrow{u} a^2$$
, $b \xrightarrow{u} b$, $c \xrightarrow{u} d$, $d \xrightarrow{u} c$.

Physical CP transformations are
of the flavor symmetry group.class-inverting outer automorphisms
[M. Lindner et al., JHEP 1304, 122;
M. Ratz et al., Nucl.Phys.B 883, 267(2014).]10

 \succ Defining CP transformations compatible with $\Delta(6n^2)$

GCP transformation $X_r(u)$ for the unique automorphism u:

$$X_{\mathbf{r}}(u) \rho_{\mathbf{r}}^{*}(\mathbf{a}) X_{\mathbf{r}}^{\dagger}(u) = \rho_{\mathbf{r}}(\mathbf{u}(\mathbf{a})) = \rho_{\mathbf{r}}(a^{2})$$

$$X_{\mathbf{r}}(u) \rho_{\mathbf{r}}^{*}(\mathbf{b}) X_{\mathbf{r}}^{\dagger}(u) = \rho_{\mathbf{r}}(\mathbf{u}(\mathbf{b})) = \rho_{\mathbf{r}}(b)$$

$$X_{\mathbf{r}}(u) \rho_{\mathbf{r}}^{*}(\mathbf{c}) X_{\mathbf{r}}^{\dagger}(u) = \rho_{\mathbf{r}}(\mathbf{u}(\mathbf{c})) = \rho_{\mathbf{r}}(d)$$

$$X_{\mathbf{r}}(u) \rho_{\mathbf{r}}^{*}(\mathbf{d}) X_{\mathbf{r}}^{\dagger}(u) = \rho_{\mathbf{r}}(\mathbf{u}(\mathbf{d})) = \rho_{\mathbf{r}}(c)$$

Including inner automorphism, the full GCP transformation is

$$X_{\mathbf{r}} = \rho_{\mathbf{r}}(g), \quad g \in \Delta(6n^2)$$

CP transformations and flavor symmetry transformations are of the same form in the chosen basis.

"Semi-direct" approach of flavor symmetry with GCP

The LH lepton doublets are assigned to be a Δ(6n²) triplet 3;
The lepton mixing arises from the mismatch between two remnant symmetries, and it is independent of how the remnant symmetries is dynamically realized(model independent).

Step 1: Constraints from the remnant flavor symmetries

Charged leptonNeutrinoInvariant under $l \rightarrow \rho_3(g_l)l$ Invariant under $\nu \rightarrow \rho_3(g_\nu)\nu$ $\rho_3^{\dagger}(g_l)m_l^{\dagger}m_l\rho_3(g_l) = m_l^{\dagger}m_l, g_l \in G_l$ $\rho_3^T(g_\nu)m_\nu\rho_3(g_\nu) = m_\nu, g_\nu \in Z_2$ $\left[\rho_3(g_l), m_l^{\dagger}m_l\right] = 0$ $\left[\rho_3(g_\nu), m_\nu^{\dagger}m_\nu\right] = 0$

Mixing matrices diagonalizing m_{ν} , $m_{l}^{\dagger}m_{l}$ also diagonalize $\rho_{3}(g_{\nu})$ and $\rho_{3}(g_{l})$, respectively !

•The remnant flavor symmetry in the neutrino sector is relaxed from K_4 to Z_2 , only one column can be fixed.

[D.Hernandez, A.Smirnov, Phys.Rev.D86 (2012).]

Column vector determined by remnant flavor symmetry

$$G_{\nu} = Z_{2}^{bc^{x}d^{x}} \qquad G_{\nu} = Z_{2}^{c^{n/2}}$$

$$G_{l} = \langle c^{s}d^{t} \rangle \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times$$

$$G_{l} = \langle bc^{s}d^{t} \rangle \qquad \begin{pmatrix} 0 \\ \cos\left(\frac{s+t-2x}{2n}\pi\right) \\ \sin\left(\frac{s+t-2x}{2n}\pi\right) \\ \sin\left(\frac{s+t-2x}{2n}\pi\right) \end{pmatrix} \times \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times$$

$$G_{l} = \langle ac^{s}d^{t} \rangle \qquad \sqrt{\frac{2}{3}} \begin{pmatrix} \sin\left(\frac{s-x}{n}\pi\right) \\ \cos\left(\frac{\pi}{6} - \frac{s-x}{n}\pi\right) \\ \cos\left(\frac{\pi}{6} + \frac{s-x}{n}\pi\right) \end{pmatrix} \checkmark \qquad \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \checkmark$$

$$G_{l} = \langle abc^{s}d^{t} \rangle \qquad \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -\sqrt{2} \end{pmatrix} \approx \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times$$

$$G_{l} = \langle a^{2}bc^{s}d^{t} \rangle \qquad \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -\sqrt{2} \end{pmatrix} \approx \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times$$

Two cases are viable

Step 2: including remnant CP symmetry

remnant CP symmetry has to be compatible with remnant flavor symmetry

$$X_{\nu \mathbf{r}} \rho_{\mathbf{r}}^{*}(g_{\nu}) X_{\nu \mathbf{r}}^{-1} = \rho_{\mathbf{r}}(g_{\nu}), \quad g_{\nu} \in \mathbb{Z}_{2}$$

$$g_{\nu} = bc^{x}d^{x} \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(c^{\gamma}d^{-2x-\gamma}), \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(bc^{\gamma}d^{-\gamma}), \quad \gamma = 0, 1, 2...n-1$$
$$g_{\nu} = c^{n/2} \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(c^{\gamma}d^{\delta}), \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(abc^{\gamma}d^{\delta}), \quad \gamma, \delta = 0, 1, 2...n-1$$

Step 3: Constructing neutrino mass matrix and extract PMNS matrix

Step 2: including remnant CP symmetry

remnant CP symmetry has to be compatible with remnant flavor symmetry

$$X_{\nu \mathbf{r}} \rho_{\mathbf{r}}^{*}(g_{\nu}) X_{\nu \mathbf{r}}^{-1} = \rho_{\mathbf{r}}(g_{\nu}), \quad g_{\nu} \in \mathbb{Z}_{2}$$

$$g_{\nu} = bc^{x}d^{x} \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(c^{\gamma}d^{-2x-\gamma}), \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(bc^{\gamma}d^{-\gamma}), \quad \gamma = 0, 1, 2...n-1$$
$$g_{\nu} = c^{n/2} \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(c^{\gamma}d^{\delta}), \quad X_{\nu\mathbf{r}} = \rho_{\mathbf{r}}(abc^{\gamma}d^{\delta}), \quad \gamma, \delta = 0, 1, 2...n-1$$

Step 3: Constructing neutrino mass matrix and extract PMNS matrix

•Case I:
$$G_l = \langle ac^s d^t \rangle$$
, $G_{\nu} = Z_2^{bc^x d^x}$, $X_{\nu \mathbf{r}} = \left\{ \rho_{\mathbf{r}} (c^{\gamma} d^{-2x-\gamma}), \rho_{\mathbf{r}} (bc^{x+\gamma} d^{-x-\gamma}) \right\}$
 $U_{PMNS}^{I,1st} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\sin\varphi_1 & e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\cos\varphi_1 & e^{i\varphi_2}\sin\theta + \sqrt{2}\cos\theta\cos\varphi_1 \\ \sqrt{2}\cos\left(\frac{\pi}{6} - \varphi_1\right) & e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\sin\left(\frac{\pi}{6} - \varphi_1\right) & -e^{i\varphi_2}\sin\theta + \sqrt{2}\cos\theta\sin\left(\frac{\pi}{6} - \varphi_1\right) \\ \sqrt{2}\cos\left(\frac{\pi}{6} + \varphi_1\right) & e^{i\varphi_2}\cos\theta + \sqrt{2}\sin\theta\sin\left(\frac{\pi}{6} + \varphi_1\right) & e^{i\varphi_2}\sin\theta - \sqrt{2}\cos\theta\sin\left(\frac{\pi}{6} + \varphi_1\right) \end{pmatrix}$
3 parameters involved
 $\varphi_1 = \frac{s-x}{n}\pi = 0, \pm \frac{1}{n}\pi, \pm \frac{2}{n}\pi, \dots \pm \frac{n-1}{n}\pi$
 $\varphi_2 = \frac{2t-s-3(\gamma+x)}{n}\pi = 0, \frac{1}{n}\pi, \frac{2}{n}\pi, \dots \frac{2n-1}{n}\pi \mod 2\pi$
 Q is a final mean mean metric in final function of the sum entropy of

 θ is a free parameter, it is fixed by the experimental data.

Correlation between θ_{12} and θ_{13}

$$3\cos^2\theta_{12}\cos^2\theta_{13} = 2\sin^2\varphi_1$$
 Independent of θ

Permutation the columns

$$U_{PMNS}^{I,2nd} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{i\varphi_2}\sin\theta + \sqrt{2}\cos\theta\cos\varphi_1 & e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\cos\varphi_1 & \sqrt{2}\sin\theta - \sqrt{2}\sin\theta + \sqrt{2}\sin\theta + \sqrt{2}\cos\theta\sin(\frac{\pi}{6} - \varphi_1) & -e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\sin(\frac{\pi}{6} - \varphi_1) & \sqrt{2}\cos(\frac{\pi}{6} - \varphi_1) \\ e^{i\varphi_2}\sin\theta - \sqrt{2}\cos\theta\sin(\frac{\pi}{6} + \varphi_1) & e^{i\varphi_2}\cos\theta + \sqrt{2}\sin\theta\sin(\frac{\pi}{6} + \varphi_1) & \sqrt{2}\cos(\frac{\pi}{6} - \varphi_1) &$$

Both
$$heta_{13}$$
 and $heta_{23}$ only depend on the discrete parameter ϕ_1

CP phases are also not constrained for very large n.

 $\sqrt{2}\sin\varphi_1$

•Case II:
$$G_l = \langle ac^s d^t \rangle$$
, $G_{\nu} = Z_2^{c^{n/2}}$, $X_{\nu \mathbf{r}} = \rho_{\mathbf{r}}(c^{\gamma} d^{\delta})$
 $U_{PMNS}^{II} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{i\varphi_4} \cos \theta - e^{i\varphi_5} \sin \theta & 1 & e^{i\varphi_4} \sin \theta + e^{i\varphi_5} \cos \theta \\ \omega e^{i\varphi_4} \cos \theta - \omega^2 e^{i\varphi_5} \sin \theta & 1 & \omega e^{i\varphi_4} \sin \theta + \omega^2 e^{i\varphi_5} \cos \theta \\ \omega^2 e^{i\varphi_4} \cos \theta - \omega e^{i\varphi_5} \sin \theta & 1 & \omega^2 e^{i\varphi_4} \sin \theta + \omega e^{i\varphi_5} \cos \theta \end{pmatrix}$

with

$$\varphi_4 = \frac{\gamma + \delta + 2s}{n}\pi, \quad \varphi_5 = \frac{2\delta - \gamma + 2t}{n}\pi$$
$$\varphi_4, \varphi_5 \mod 2\pi = 0, \frac{1}{n}\pi, \frac{2}{n}\pi, \dots, \frac{2n-1}{n}\pi$$

Correlation between θ_{12} and θ_{13} :

Trimaximal mixing

[X.G.He and A.Zee, Phys.Lett.B645(2007)427; Phys.Rev. D84 (2011) 053004]

$$\cos^2\theta_{13}\sin^2\theta_{12} = \frac{1}{3}$$

• Case III:
$$G_l = \langle ac^s d^t \rangle$$
, $G_{\nu} = Z_2^{c^{n/2}}$, $X_{\nu \mathbf{r}} = \rho_{\mathbf{r}} (abc^{\gamma} d^{\delta})$
 $U_{PMNS}^{III} = \frac{1}{\sqrt{3}} \begin{pmatrix} -i\sqrt{2}e^{i\varphi_6}\sin\theta & 1 & \sqrt{2}e^{i\varphi_6}\cos\theta \\ i\sqrt{2}e^{i\varphi_6}\cos\left(\theta - \frac{\pi}{6}\right) & 1 & \sqrt{2}e^{i\varphi_6}\sin\left(\theta - \frac{\pi}{6}\right) \\ -i\sqrt{2}e^{i\varphi_6}\cos\left(\theta + \frac{\pi}{6}\right) & 1 & -\sqrt{2}e^{i\varphi_6}\sin\left(\theta + \frac{\pi}{6}\right) \end{pmatrix}$

Mixing angles(only depend on θ):

 $\tan \delta_{CP} = \tan \alpha_{31} = 0, \quad |\tan \alpha_{21}| = |\tan(2\varphi_6)|$ (1) Both δ_{CP} and α_{31} are conserved; (2) $\alpha_{21} = 0, \frac{1}{n}\pi, \dots, \frac{2n-1}{n}\pi$

Predictions for neutrinoless double decay (in the limit $n \rightarrow \infty$):

 $= \left[(m_1 c_{12}^2 + m_2 s_{12}^2 e^{i\alpha_{21}}) c_{13}^2 + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta_{CP})} \right]$ Disfavoured by $0\nu\beta\beta$ Disfavoured by $0\nu\beta\beta$ Case I 2nd Case | 1st 10^{-1} 10^{-1} **Disfavoured by Cosmology Disfavoured by Cosmology** meel [eV] meel [eV] 10^{-3} 10^{-3} 10^{-} 10 10^{-3} 10^{-4} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-2} 10^{-1} mlightest [eV] m_{lightest} [eV] Disfavoured by 0νββ Disfavoured by $0\nu\beta\beta$ Case II Case III 10-1 10^{-1} **Disfavoured by Cosmology Disfavoured by Cosmology** [mee] [eV] meel [eV] 10^{-3} 10^{-3} 10^{-1} 10^{-} 10^{-2} 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-1} 10^{-4} m_{lightest} [eV] m_{lightest} [eV]

Difficult to test due to limitation of sensitivity

Extending the "Semi-direct" approach

Extending the "Semi-direct" approach

Relation between θ_{13} and θ_{23}

$$2\cos^{2}\theta_{13}\sin^{2}\theta_{23} = 1 \quad \text{or} \quad 2\cos^{2}\theta_{13}\sin^{2}\theta_{23} = \cos 2\theta_{13}$$

$$\cdot \sin^{2}\theta_{23} \approx 0.488, \ 0.512 \qquad \qquad \text{Precisely measure } \theta_{23}$$

$$\int_{0.45}^{0.45} \int_{0.45}^{0.45} \int_{0.45}^{0.45} \int_{0.45}^{0.45} \int_{0.328 \le \sin^{2}\theta_{12} \le 0.359}^{0.359} \int_{0.328 \le \sin^{2}\theta_{12} \le 0.359}^{0.359} \int_{0.328 \le \sin^{2}\theta_{12} \le 0.359}^{0.359} \int_{0.36}^{0.46} \int_{0.46}^{0.46} \int_{0$$

n

n

Summary:

- •The predictions of $\Delta(6n^2)$ with generalized CP symmetry for lepton mixing are studied in a model independent way.
- •There are only four viable cases. We find the mixing angles are constrained within certain ranges. Precise measurement of θ_{12} (at JUNO) and θ_{23} can directly test this scenario.
- •CP phases are generally predicted to take regular values $0,\pi$ or $\pm\pi/2$ for small n, while they are usually not constrained for large value of n.
- •Exploring the phenomenological predictions for leptogenesis, electric dipole moments and more phenomena related with CP.

Thank you for your attention!

Where do we stand?

Taken from NuFIT, arXiv:1409.5439

	Normal Ordering $(\Delta \chi^2 = 0.97)$		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$ heta_{13}/^{\circ}$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	0 ightarrow 360	254_{-62}^{+63}	0 ightarrow 360	0 ightarrow 360
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	7.02 ightarrow 8.09
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

Unknown quantities: (1)CP phases: δ_{CP} , α_{21} and α_{31} ; (2) neutrino mass order.

Inner automorphism σ_h is defined as

$$\sigma_h: g \to hgh^{-1}, \qquad h, g \in G_f$$

Fixed vector in the 2nd column

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\cos\varphi_1 & \sqrt{2}\sin\varphi_1 & e^{i\varphi_2}\sin\theta + \sqrt{2}\cos\theta\cos\varphi_1 \\ -e^{i\varphi_2}\cos\theta - \sqrt{2}\sin\theta\sin\left(\frac{\pi}{6} - \varphi_1\right) & \sqrt{2}\cos\left(\frac{\pi}{6} - \varphi_1\right) & -e^{i\varphi_2}\sin\theta + \sqrt{2}\cos\theta\sin\left(\frac{\pi}{6} - \varphi_1\right) \\ e^{i\varphi_2}\cos\theta + \sqrt{2}\sin\theta\sin\left(\frac{\pi}{6} + \varphi_1\right) & \sqrt{2}\cos\left(\frac{\pi}{6} + \varphi_1\right) & e^{i\varphi_2}\sin\theta - \sqrt{2}\cos\theta\sin\left(\frac{\pi}{6} + \varphi_1\right) \end{pmatrix}$$

The correct values of θ_{12} , θ_{13} and θ_{23} can not be achieved simultaneously.