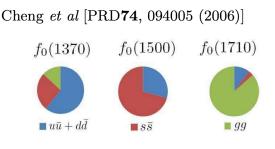
Glueball Identification in Baryonic B decays

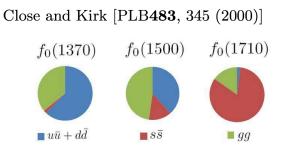
Yu-Kuo Hsiao

NCTS, Hsinchu Oct. 11, 2014 In Collaboration with Prof. C.Q. Geng PLB727, 168 (2013)

Outline:


- Introduction
- Formalism
- Results
- Summary

What is glueball?


- gluon
- \star as force carrier:
- bind quarks to form $M(q\bar{q}), B(qqq)$
- \star with color:
- glue themselves to be a bound state: G(gg), G(ggg)
- unique
- \star without quarks
- \star massless \Rightarrow massive
- Not confirmed yet!

Three lightest glueballs • scalar glueball $J^{PC} = 0^{++}$ $m_G = 1.5$ or 1.7 GeV (LQCD) $f_0(1370), f_0(1500), f_0(1710)$ mixture of $G, \bar{n}n, \bar{s}s \ [\bar{n}n = (\bar{u}u + \bar{d}d)/\sqrt{2}]$ X.G. He *et al.*, PRD73, 051502 (2006) unclear glueball identification

*
$$B^- \to f_0(1370, 1500, 1370) e^- \bar{\nu}_e$$
 can be useful.
 $\mathcal{B}_{f_0(1370)} = (2.3 - 2.6) \times 10^{-5}$
 $\mathcal{B}_{f_0(1500)} \simeq (2 - 3) \times \mathcal{B}_{f_0(1710)} \ (m_G \simeq 1.5 \text{ GeV})$
 $\mathcal{B}_{f_0(1500)} \simeq (7 - 8) \times \mathcal{B}_{f_0(1710)} \ (m_G \simeq 1.7 \text{ GeV})$
Y.K. Hsiao, C.C. Lih, C.Q. Geng, PRD89, 077501 (2014)

 $M_{n\bar{n}} < M_{s\bar{s}} < M_{aa}$

 $M_{n\bar{n}} < M_{gg} < M_{s\bar{s}}$

Vincent Mathieu

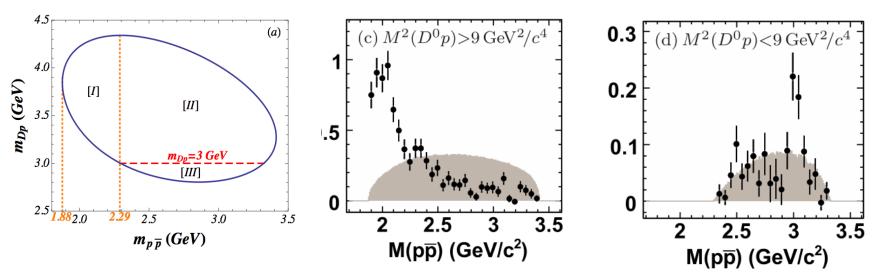
• tensor glueball $J^{PC} = 2^{++}$ $m_G \simeq 2.4 \text{ GeV} (\text{LQCD})$ $f_J \equiv f_J(2220) \ (J = 2 \text{ or } 4)$, the candidate $\star \mathcal{B}(J/\Psi \to \gamma f_J) > 2.50 \times 10^{-3}$ $c\bar{c} \rightarrow qq\gamma$, gluon-rich process \star other possibilities, not excluded: $f_2(2340)$ $f_2(1270), f'_2(1525)$ the MIT bag model $(M(2^{++}) = 1.3 \text{ GeV})$

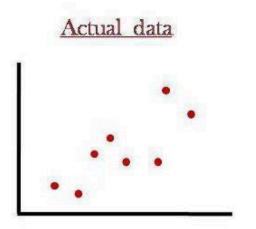
 $\star \mathcal{B}(\bar{B}^0_s \to J/\psi p\bar{p}) = 3.0 \times 10^{-6} \text{ (LHCb)}$ (studied by Y.K. Hsiao and C.Q. Geng) OZI rule in $\bar{B}^0_s \to (c\bar{c})(s\bar{s}) \to J/\psi p\bar{p}$: with $s\bar{s} \to p\bar{p}, \ \mathcal{B}(\bar{B}^0_s \to J/\psi p\bar{p}) \le 10^{-9}$ \star resonant $\bar{B}^0_s \to J/\psi(f_J \to)p\bar{p}$ as the solution $m_{p\bar{p}}$: 1.88-2.27 GeV $f_J(2220) \rightarrow p\bar{p}$ found in $p\bar{p}$ scatterings

• pseudoscalar glueball $J^{PC} = 0^{-+}$ $m_G \simeq 2.6 \text{ GeV} (LQCD)$ $\eta(1405)$, the favorite candidate $\star \mathcal{B}(J/\Psi \to \gamma \eta(1405)) \simeq 10^{-3}$ \star the unseen in $\gamma\gamma$ reactions • out of range \circ mixture of G, $\bar{n}n$, $\bar{s}s$ H.Y. Cheng, H.n. Li, K.F. Liu, PRD79, 014024 (2009)

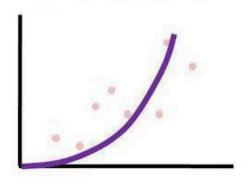
Glueball with $m_G > 3 \text{ GeV}$

- many glueballs with $m_G > 3$ GeV have been predicted
- Clear identification
- no mesons around (too fat for their existence), no mixing
- PANDA experiment:
- scan heavy G's with masses < 5.4 GeV, not ready until 2018
- $M(c\bar{c})$ decays, such as $\psi(2S)$ in the range of 3.0-3.7 GeV

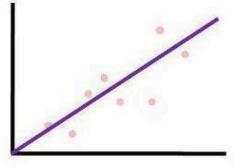

• B decays can be useful:

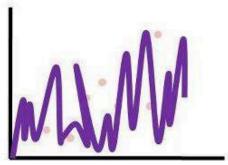

unlike $J/\psi(c\bar{c})$ decays $\Rightarrow ggg, gg\gamma$ not regarded as a gluon-rich process

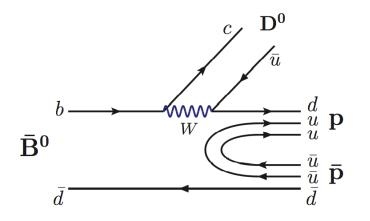
• $B \to p\bar{p}M$ decays: $B \to (G \to p\bar{p})M$


 m_B , heavy \Rightarrow a wider range to scan $m_{p\bar{p}}$ spectrum

• An unknown peak in $\bar{B}^0 \rightarrow p\bar{p}D^0$, Glueball? BABAR, PRD85, 092017 (2012)

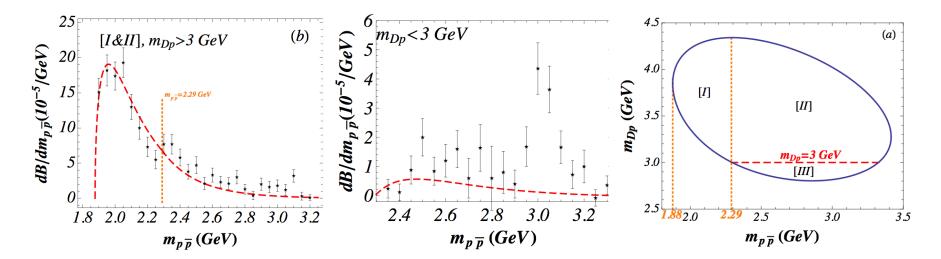



How your supervisor saw it: Perfectly exponential, amazing new stuff



How you saw it: Perfectly linear, as expected

How the referee saw it: Pure noise


$$\begin{aligned} \mathcal{A}(\bar{B}^{0} \to p\bar{p}D^{0}) &= \frac{G_{F}}{\sqrt{2}} V_{cb} V_{ud}^{*} a_{2} \langle D^{0} | (\bar{c}u)_{V-A} | 0 \rangle \langle p\bar{p} | (\bar{d}b)_{V-A} | \bar{B}^{0} \rangle \\ \langle D^{0} | (\bar{c}u)_{V-A} | 0 \rangle &= i f_{D} p^{\mu} \\ \langle p\bar{p} | \bar{d}\gamma_{\mu} b | \bar{B}^{0} \rangle &= \bar{u} [g_{1}\gamma_{\mu} + g_{2}i\sigma_{\mu\nu}p^{\nu} + g_{3}p_{\mu} + g_{4}q_{\mu} + g_{5}(p_{\bar{p}} - p_{p})_{\mu}]\gamma_{5}v \\ \langle p\bar{p} | \bar{d}\gamma_{\mu}\gamma_{5}b | \bar{B}^{0} \rangle &= i \bar{u} [f_{1}\gamma_{\mu} + f_{2}i\sigma_{\mu\nu}p^{\nu} + f_{3}p_{\mu} + f_{4}q_{\mu} + f_{5}(p_{\bar{p}} - p_{p})_{\mu}]v \end{aligned}$$

•
$$f_j(g_j) = D_{f_j(g_j)}/t^3, t = m_{p\bar{p}}^2$$

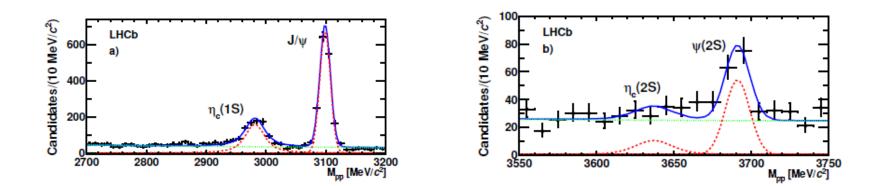
* $\mathcal{B}(\bar{B}^0 \to p\bar{p}D^{(*)0}), \mathcal{B}(B^- \to \Lambda \bar{p}J/\psi)$ well explained * predictions for $\mathcal{B}(B^- \to \Lambda \bar{p}D^{(*)0}), \mathcal{B}(\bar{B}^0 \to \Sigma^0 \bar{\Lambda}D^0)$ approved to agree with later measurements \Rightarrow trustworthy!

decay mode	our result	data
$10^{6}\mathcal{B}(B^{-}\to\Lambda\bar{\Lambda}K^{-})$	2.8 ± 0.2	$3.38^{+0.41}_{-0.36}\pm0.41$
$10^6 \mathcal{B}(\bar{B}^0 \to \Lambda \bar{\Lambda} \bar{K}^0)$	2.5 ± 0.3	$4.76^{+0.84}_{-0.68}\pm0.61$
$10^7 \mathcal{B}(B^- \to \Lambda \bar{\Lambda} \pi^-)$	1.7 ± 0.7	< 9.4
$\mathcal{A}_{cp}(B^- \to p\bar{p}K^{*-})$	$0.22^{+0.04}_{-0.03}\pm 0.01\pm 0.01$	0.21 ± 0.16
$10^5 \mathcal{B}(B^- \to \Lambda \bar{p} D^0)$	1.14 ± 0.26	$1.43^{+0.28}_{-0.25}\pm0.18$
$10^5 \mathcal{B}(B^- \to \Lambda \bar{p} D^{*0})$	3.23 ± 0.32	$1.53^{+1.12}_{-0.85} \pm 0.47 \; (< 4.8)$
$10^5 \mathcal{B}(\bar{B}^0 \to \Sigma^0 \bar{\Lambda} D^0)$	1.8 ± 0.5	$1.5\substack{+0.9 \\ -0.8}$

• Resonant state appears!

• χ^2 fitting

1. right panel: $\chi^2/d.o.f = 3.95$, in which


0.96 arises from the non-peaking data points

2.99 from the 6 peaking data points

at (2.95, 3.00, 3.05, 3.10, 3.15, 3.20) GeV

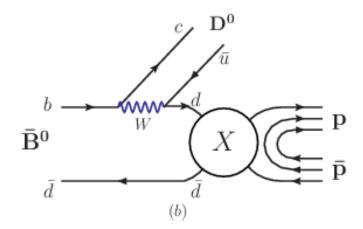
 $\bar{B}^0 \to (M(c\bar{c}) \to p\bar{p})D^0$

- $m_{J/\psi}, m_{\eta_c} \simeq 3 \text{ GeV}$
- In $B^- \to p\bar{p}K^-$, the $M(c\bar{c})$ states are observed. LHCb, Eur. Phys. J. C73, 2462 (2013)

•
$$\mathcal{B}(\bar{B}^0 \to (J/\psi \to p\bar{p})D^0) \simeq \mathcal{B}(\bar{B}^0 \to J/\psi D^0)\mathcal{B}(J/\psi \to p\bar{p})$$

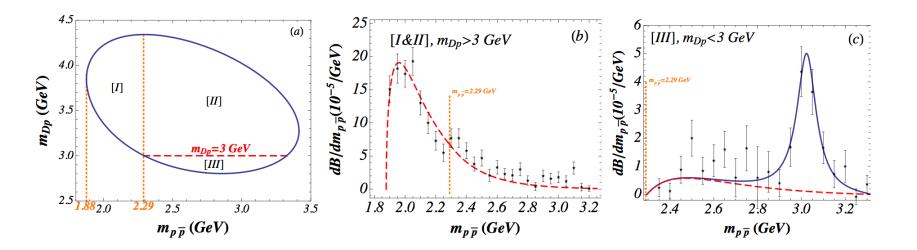
 $\mathcal{B}(\bar{B}^0 \to (J/\psi \to p\bar{p})D^0) = 8 \times 10^{-6} \text{ (data)}$
 $\mathcal{B}(J/\psi \to p\bar{p}) = 2 \times 10^{-3} \text{ (pdg)}$
 $\Rightarrow \mathcal{B}(\bar{B}^0 \to J/\psi D^0) = 4 \times 10^{-3} \gg [< 1.3 \times 10^{-5} \text{ (pdg)}],$

- $\Gamma(data) \simeq 100\text{-}200 \text{ MeV} \gg \Gamma(J/\psi) = 93 \text{ KeV}$
- Similarly, $\eta_c \to p\bar{p}$ can't work.
- $\times M(c\bar{c})$


$\bar{B}^0 \to (X \to p\bar{p})D^0, X = M(d\bar{d}) \text{ or } G?$

• $\bar{B}^0 \to p\bar{p}$ transition:

 $\langle p\bar{p}|(\bar{d}b)_{V-A}|\bar{B}^{0}\rangle = \langle p\bar{p}|X\rangle \frac{i}{(t-m_{X}^{2})+im_{X}\Gamma_{X}}\langle X|(\bar{d}b)_{V-A}|\bar{B}^{0}\rangle$


• Resonant amplitude:

$$\mathcal{A}_R(\bar{B}^0 \to (X \to p\bar{p})D^0) = \frac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* a_2 \frac{f_D}{(t-m_X^2) + im_X \Gamma_X} \bar{u}(a+b\gamma_5) v$$

•
$$\mathcal{A} = \mathcal{A}(\bar{B}^0 \to p\bar{p}D^0) + \mathcal{A}_R(\bar{B}^0 \to (X \to p\bar{p})D^0)$$

 $\chi^2/d.o.f = 1.17$ $|a| = |b| = 4.4 \pm 1.0$ $(m_X, \Gamma_X) = (3020 \pm 8, 107 \pm 30) \text{ MeV}$ $\mathcal{B}(\bar{B}^0 \to p\bar{p}D^0) \simeq 1 \times 10^{-4}$

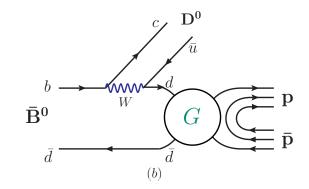
$M(n\bar{n}) \ [(u\bar{u}+d\bar{d})/\sqrt{2}], \text{ not likely!}$

For the normal mesons $M(n\bar{n})$, $M(s\bar{s})$:

- no observations heavier than $f_6(2510)$ (PDG)
- \bullet no QCD predictions heavier than 2.8 GeV

```
PRD83, 111502 (2011)
```

• hadronic Regge trajectories give the mass limits– $M(n\bar{n})$: (2.86 ± 0.11) GeV $M(s\bar{s})$: (3.10 ± 0.11) GeV


PRD 61, 054013 (2000)

When you have eliminated the impossible, whatever remains, however improbable, must be the truth.

- It is reasonable to identify X(3020) as a glueball.
- no mixing with normal mesons
- predictions (in units of MeV)

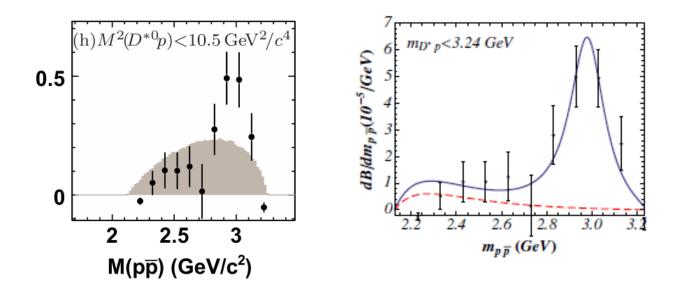
$J^{PC} = 2^{-+}$	1	1+-
$3100 \pm 30 \pm 150$	3200 ± 200	$2940 \pm 30 \pm 140$
$3040 \pm 40 \pm 150$	$3240 \pm 330 \pm 150$	$2980 \pm 30 \pm 140$
2950 ± 150	3020	3270 ± 340
★ 2 ⁻⁺ : gg		

00

 $\star 1^{--}, 1^{+-}$: ggg

• $\mathcal{O} - J/\psi$ mixing (\mathcal{O} : 1⁻⁻ glueball)

Hou, Soni, 1983 solution to $\rho\pi$ puzzle: $\mathcal{B}(J/\psi \to \rho\pi) = 1.7\%$, big


One of the scenarios gives
$$\label{eq:Gamma} \begin{split} \Gamma_{\mathcal{O}} < 120 \ {\rm MeV} \\ |m_{\mathcal{O}} - m_{J/\psi}| < 80 \ {\rm MeV} \end{split}$$

Hou, PRD55, 6952 (1997)

• $\bar{B}^0 \to p\bar{p}D^{*0}$

$$\star (m_X, \Gamma_X) = (2980 \pm 17, 187 \pm 71) \text{ MeV}$$

\star the combined data: $(m_X, \Gamma_X) = (3013 \pm 7, 119 \pm 28) \text{ MeV}$

Bound state

- $N^* \overline{N}^*$ bound state with $N^* \equiv N(1440), N(1520)$
- a working hypothesis
- $\Lambda_c(2800), \Lambda_c(2940)$ as DN and D^*p
- $f_0(1370)$ and $f_0(1710)$
- as two-vector meson bound states
- Unlike glueball, predicted in theory

Summary

• We have examined the nature of the unknown peak in the $m_{p\bar{p}}$ spectrum of the $\bar{B}^0 \to p\bar{p}D^0$ decay.

• The peak can be neither identified as η_c or J/ψ , nor classified as $M(d\bar{d})$.

• We conclude that it corresponds to a glueball fitted as X(3020): $(m_X, \Gamma_X) = (3020 \pm 8, 107 \pm 30) \text{ MeV}$