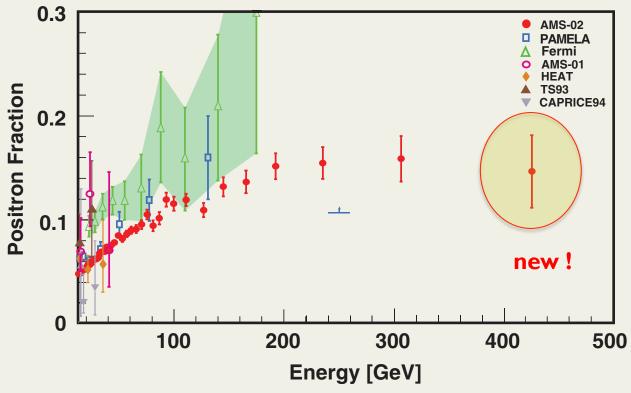
Cosmic-ray propagation and dark matter indirect detections

Yu-Feng Zhou

State Key Laboratory of Theoretical Physics Kavli Institute for Theoretical Physics Institute of Theoretical Physics, Chinese Academy of Sciences

H.B.Jin, Y.LWu, YFZ, arXiv:1410.0171

2ND WORKSHOP ON PARTICLE PHYSICS AND COSMOLOGY AFTER HIGGS AND PLANCK, OCT 08-11 CAS


- Introduction
 - the latest AMS-02 results
 - CR propagation in the Galaxy
- Constraining the CR propagation models using AMS-02 data
 - propagation parameters
 - uncertainties in backgrounds
- Uncertainties in predictions from DM annihilations
 - Positrons and electrons
 - antiproton fluxes from DM
- Prediction for the CR antiprotons
 - Upper limits on antiproton flux from PAMELA data
 - Projections for the AMS-02 antiproton results
 - mock data of AMS-02 three-year data taking
 - Reconstruction capability

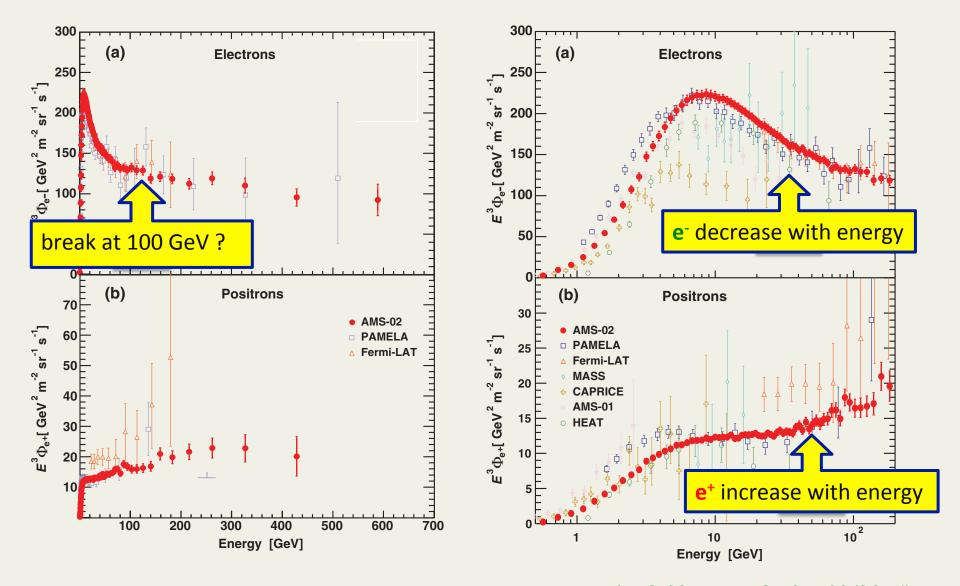
AMS-02 positron fraction (2014)

PRESS RELEASE AMS Collaboration CERN, Geneva, 18 September 2014

New results from the Alpha Magnetic Spectrometer on the International Space Station

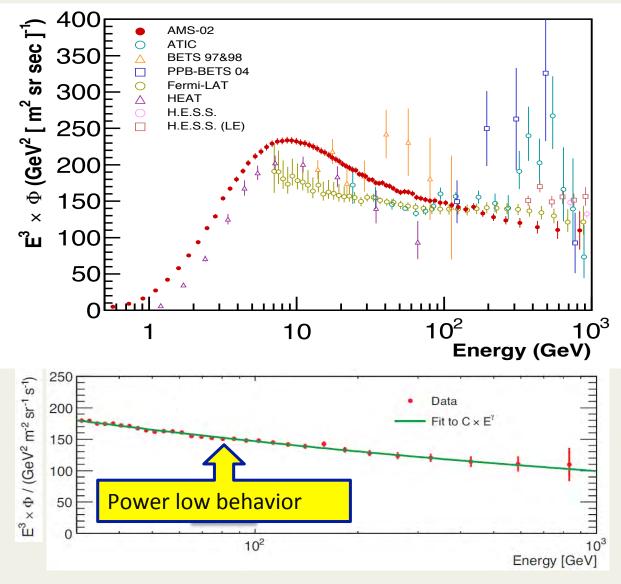
The new results on energetic cosmic ray electrons and positrons are announced today. They are based on the first 41 billion events measured with the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS). These results provide a deeper understanding of the nature of high energy cosmic rays and shed more light on the dark matter existence.

AMS-02, PRLII3, 121101 (2014) Yu-Feng Zhou, ITP-CAS

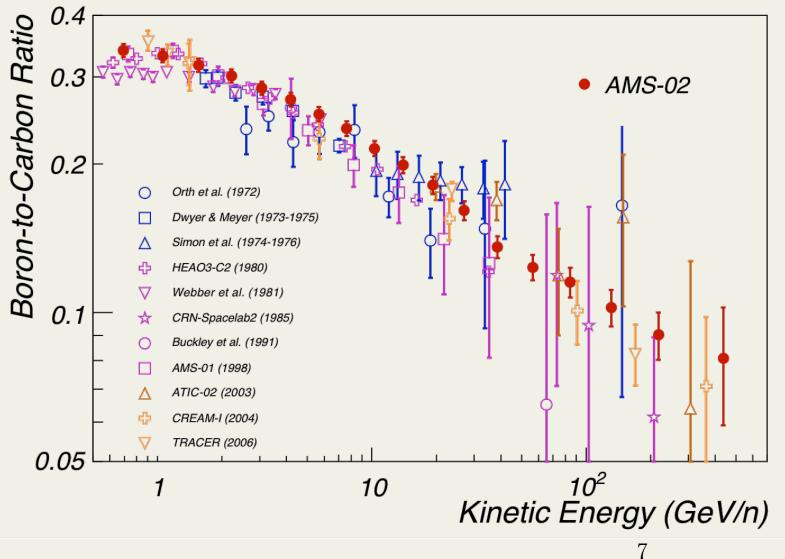

A closer look at the new data point

AMS-02, PRL113, 121101 (2014)

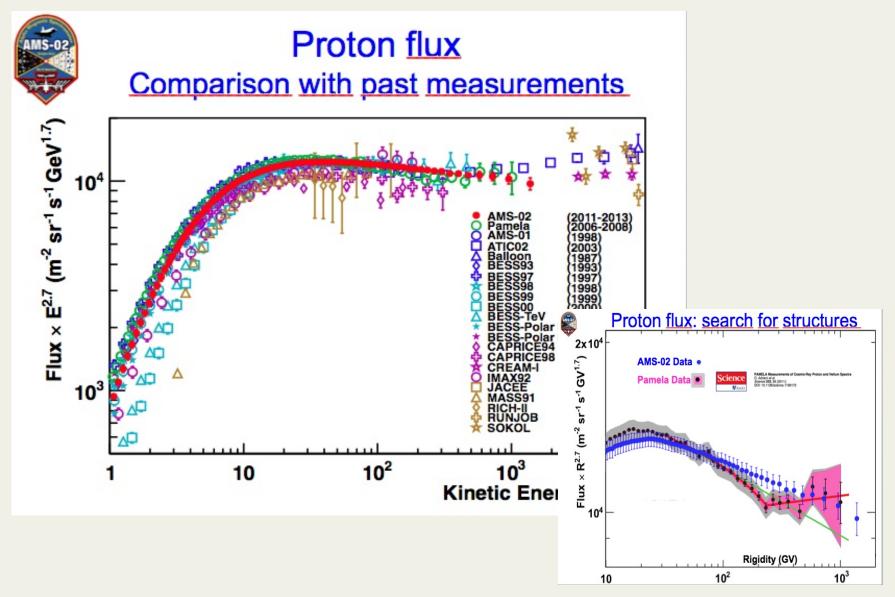
N_{e^+}	Fraction	$\sigma_{\mathrm{stat.}}$	$\sigma_{ m syst.}$
450	0.0963	0.0047	0.0014
381	0.1034	0.0056	0.0015
398	0.1207	0.0063	0.0016
358	0.1169	0.0063	0.0018
524	0.1205	0.0054	0.0021
365	0.1110	0.0062	0.0026
271	0.1327	0.0083	0.0032
228	0.1374	0.0097	0.0040
225	0.1521	0.0109	0.0053
178	0.1550	0.0124	0.0084
135	0.1590	0.0168	0.0132
72	0.1471	0.0278	0.0194
		Stat. ~19%	Syst. ~13%
	450 381 398 358 524 365 271 228 225 178 135	450 0.0963 381 0.1034 398 0.1207 358 0.1169 524 0.1205 365 0.1110 271 0.1327 228 0.1374 225 0.1521 178 0.1550 135 0.1590	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

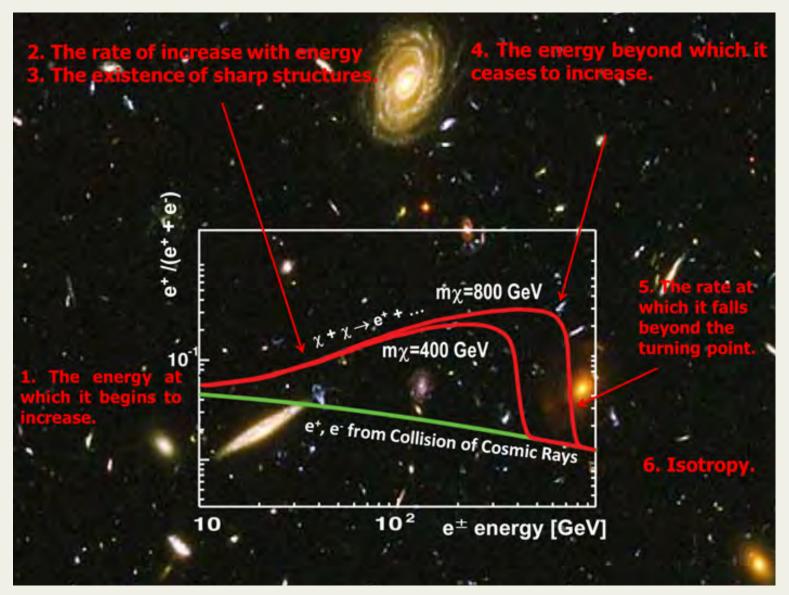

bin-

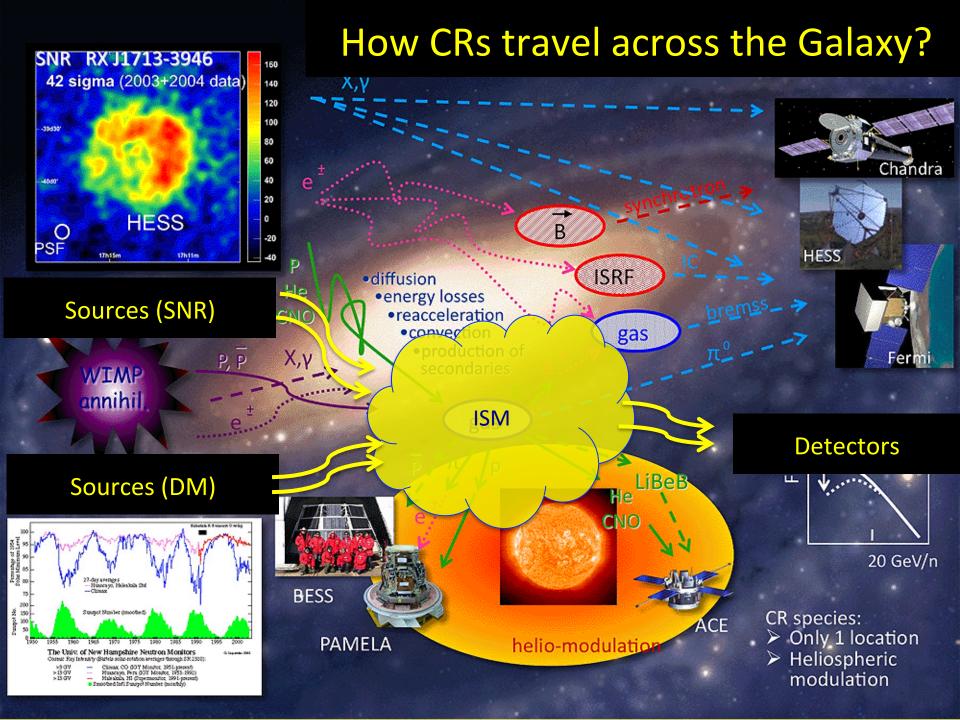
AMS-02 e⁺ and e⁻ fluxes (2014)



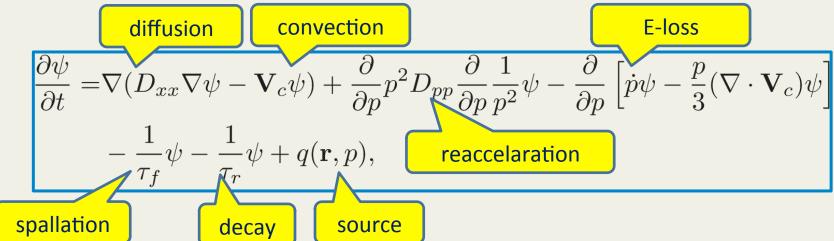
AMS-02, PRLI13, 121102(2014) Yu-Feng Zhou, ITP-CAS


AMS-02 (e⁺+e⁻) flux (2014)


AMS-02 B/C ratio (2013)



AMS-02 proton flux (2013)



Can we precisely predict the CR spectra?

Cosmic ray propagation equation

Processes involved

- Diffusion (magnetic field)
- Convection (galactic wind)
- Reacceleration
- Energy loss
 - Ionization/Coulomb scattering
 - Adiabatic energy loss due to convection
 - Inverse Compton scattering
 - Synchrotron/bremsstrahlung
 - ...
- Fragmentation/Spallation
- Radioactive decay
- Solar modulation

Sources of CR particles

- Primary sources from SNR, pulsars
- Secondary source from spallation of primary CR nuclei
- DM annihilation/decay

Approaches

- Semi-analytical solution base on two-zone diffusion model.
- Fully numerical solution using real astrophysical data.
 GALPROP/Pragon code

Processes involved in CR diffusion

Diffusion (magnetic field)

 $\hat{\mathcal{L}}_D \psi = \nabla (D_{xx} \nabla \psi)$

$$D_{xx} = \beta D_0 \left(\frac{\rho}{\rho_0}\right)^{\delta_1, \delta_2},$$

In general D₀ should be spatial dependent

Larger diffusion const. at higher energy,

Kolmogorov: $\delta = 1/3$

Convection (galactic wind)

$$\nabla V_c \psi(r,z) - \frac{\nabla V_c}{3} \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 \psi(r,z))$$

$$\left(\frac{dE}{dt}\right)_{\rm Adiab} = -E\left(\frac{2m+E}{m+E}\right)\frac{V_c}{2h}$$

Reacceleration (disturbances)

$$\frac{\partial}{\partial p}p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi$$

relation between $D_{\mbox{\scriptsize pp}}$ and $D_{\mbox{\scriptsize xx}}$

$$D_{pp} = \frac{4V_a^2 p^2}{3D_{xx}\delta\left(4 - \delta^2\right)\left(4 - \delta\right)w},$$

Processes involved in CR diffusion

Energy loss

For nuclei

Ionization/Coulomb scattering

For electrons

- Inverse Compton scattering
- Synchrotron
- ISM gas distribution
 - simple parametrizations
 - Using real data

ISM magnetic field

$$B_0 \exp\left(-\frac{R-R_{\odot}}{R_B}\right) \exp\left(-\frac{|z|}{z_B}\right),$$

Spallation/secondary

 $N_1 + (H, He) \rightarrow N_2 + X$ e.g. ¹¹C+H \rightarrow ¹¹B +X

Solar modulation force-field approximation

$$\Phi^{\text{TOA}}(T_{\text{TOA}}) = \left(\frac{2mT_{\text{TOA}} + T_{\text{TOA}}^2}{2mT + T^2}\right)\Phi(T),$$

 $T_{\text{TOA}} = T - \phi_F$

Sources of CRs

Primary sources (SNR)

Power low in rigidity

$$\frac{dq_A(p)}{dp} \propto \left(\frac{\rho}{\rho_{As}}\right)^{\gamma_A}$$

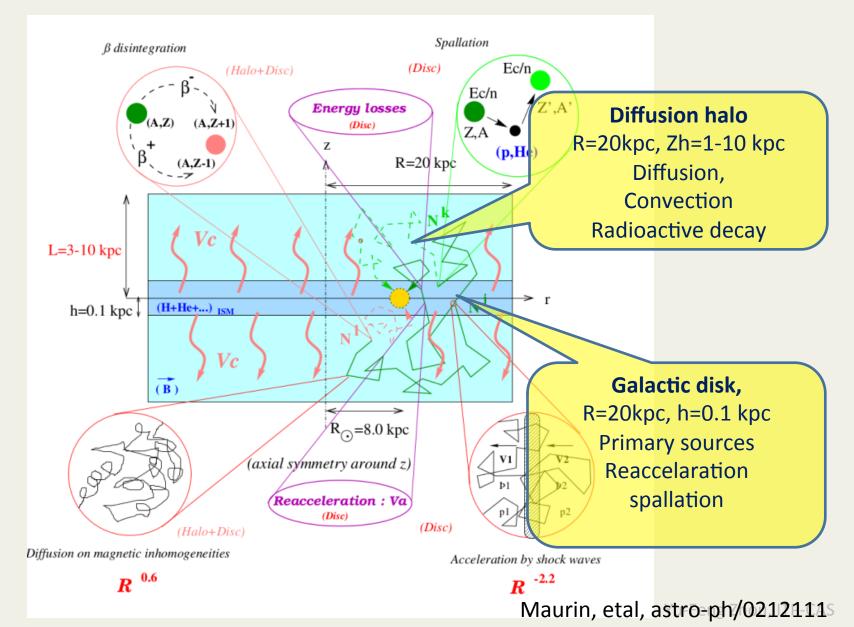
Spatial distribution

$$q_0 \left(\frac{R}{R_{\odot}}\right)^{\eta} \exp\left[-\xi \frac{R - R_{\odot}}{R_{\odot}} - \frac{|z|}{0.2 \text{ kpc}}\right]$$

<u>Secondary sources</u>

$$q(p) = \beta c n_i \sum_{i=\mathrm{H,He}} \int dp' \frac{\sigma_i(p,p')}{dp'} n_p(p')$$

• DM sources (annihilation)


$$q(\boldsymbol{r},p) = \frac{\rho(\boldsymbol{r})^2}{2m_{\chi}^2} \langle \sigma v \rangle \sum_X \eta_X \frac{dN^{(X)}}{dp},$$

DM profiles

$$\rho_{\odot} \left(\frac{r}{r_{\odot}}\right)^{-\gamma} \left(\frac{1 + (r_{\odot}/r_s)^{\alpha}}{1 + (r/r_{\odot})^{\alpha}}\right)^{(\beta - \gamma)/\alpha}$$

	α	β	γ	$r_s(\mathrm{kpc})$
NFW	1.0	3.0	1.0	20
Isothermal	2.0	2.0	0	3.5
Moore	1.5	3.0	1.5	28.0

Simplified two-zone diffusion model

Approximate solutions

For the source in the disk $q(r,z) = q(r)\delta(z)$ Hisano, hep-ph/0511118 Solution in Bessel expansion

$$\psi(r,z) = \exp\left(\frac{V_c z}{2K}\right) \sum_{i=0} \frac{Q_i}{A_i} \frac{\sinh[S_i(L-z)/2]}{\sinh[S_i L/2]} J_0(\zeta_i r_i/R)$$

with

$$A_i = 2h\Gamma_{inel} + V_c + KS_i \coth(S_i L/2)$$
$$S_i^2 = \frac{4\zeta^2}{R^2} + \frac{V_c^2}{K^2} + \frac{4\Gamma_{inel}}{K}$$

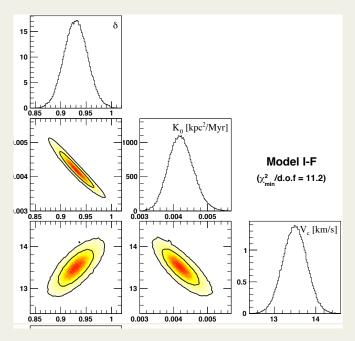
For DM sources (e.g. positrons)

Maurin, astro-ph/0212111

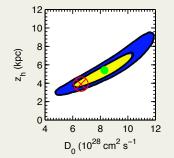
Solution in Bessel and Fourier double expansion

$$\psi(r,z) = \sum_{n,m=1} A_{nm} J_0(\zeta_n r/R) \sin[m\pi(z-L)/2L]$$

$$A_{nm} = \int E' Q_{nm}(E') \frac{\tau}{E^2} \exp\left[\left(\frac{\zeta_n^2}{R} + \frac{m^2\pi^2}{4L^2}\right) K_0 \tau \left(\frac{E^{\delta-1}}{\delta-1} - \frac{E'^{\delta-1}}{\delta-1}\right)\right]$$
Yu-Feng Zhou, ITP-CAS


Constraining the propagation models from the CR data

Observables


- -- Secondary/Primary
- B/C and sub-Fe(Sc+V+Ti)/Fe sensitive to combination D₀/Z_h
- -- Radioactive species
- ¹⁰Be/⁹Be, ³⁶Cl/Cl, ²⁶Al/²⁷Al sensitive to diffusive halo size
- -- Stable primaries
- Proton and Helium fluxes sensitive to primary sources

Degeneracies in parameters

- D₀ and Z_h are almost degenerate
- V_a scales as $(D_0)^{1/2}$
- $\delta + \gamma_{p1}$ close to 2.72

Maurin, etal, astro-ph/0212111

Trotta, etal, arXiv:1011.0037

Analysis using AMS-02 data alone

Previous analyses relay on combinations of B/C, ¹⁰Be/⁹Be, etc. from from different experiments **Our Motivations:**

- 1. AMS-02 is measuring the CRs with unprecedented accuracies
- 2. Avoiding combination of syst. errors in different experiments
- 3. All data from the same period, easy to model solar modulation effects
- 4. Now, it is possible to determining the major parameters from AMS-02

$$\boldsymbol{\theta} = \{Z_h, D_0, \delta, V_a, \gamma_{p1}, \gamma_{p2}\}.$$

Data Set: only B/C ratio + Proton flux proton flux is not just a power low in energy (break at 10 GeV imposes constraints on V_a)

B/C → D₀/Z_h, Va, δ
Proton →
$$\gamma_{1}$$
, γ_{2} , V_a

Proton flux spectrum constrains V_a , breaks V_a -- D_0 degeneracy, and enables the determination of Z_h

 $D = \{D_{B/C}^{\text{AMS}}, D_n^{\text{AMS}}\}.$

Method: Bayesian inference

Bayes's Theorem

 $p(\theta|D) = \frac{\mathcal{L}(D|\theta)\pi(\theta)}{p(D)}$

• Bayesian evidence (quality of fit)

$$p(D) = \int_{V} \mathcal{L}(D|\theta) \pi(\theta) d\theta.$$

• Marginal distribution

$$p(\theta_1, \dots, \theta_n)_{\text{marg}} = \int p(\theta|D) \prod_{i=n+1}^m d\theta_i$$

• Priors (uniform)

$$\pi(\theta_i) \propto \begin{cases} 1, & \text{for } \theta_{i,\min} < \theta_i < \theta_{i,\max} \\ 0, & \text{otherwise} \end{cases}$$

Likelihood function

$$\prod_{i} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(f_{\rm th}(\theta) - f_{{\rm obs},i})^2}{2\sigma_i^2}\right)$$

Numerical methods

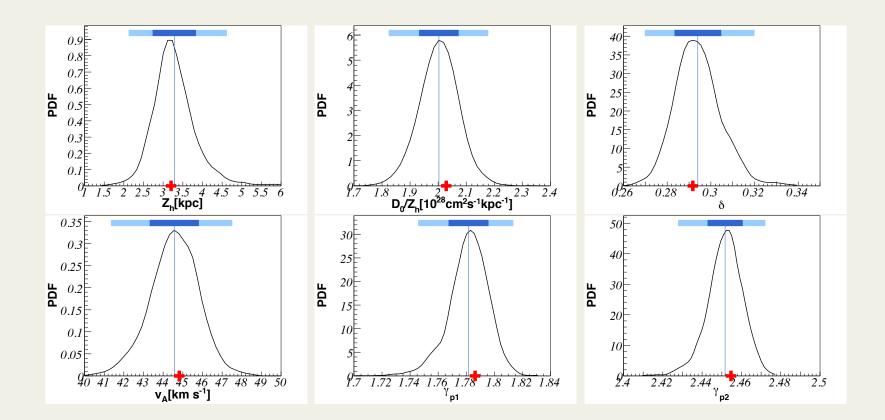
- MCMC sampling
- Metropolis-Hasting
- CosmoMC package

Results

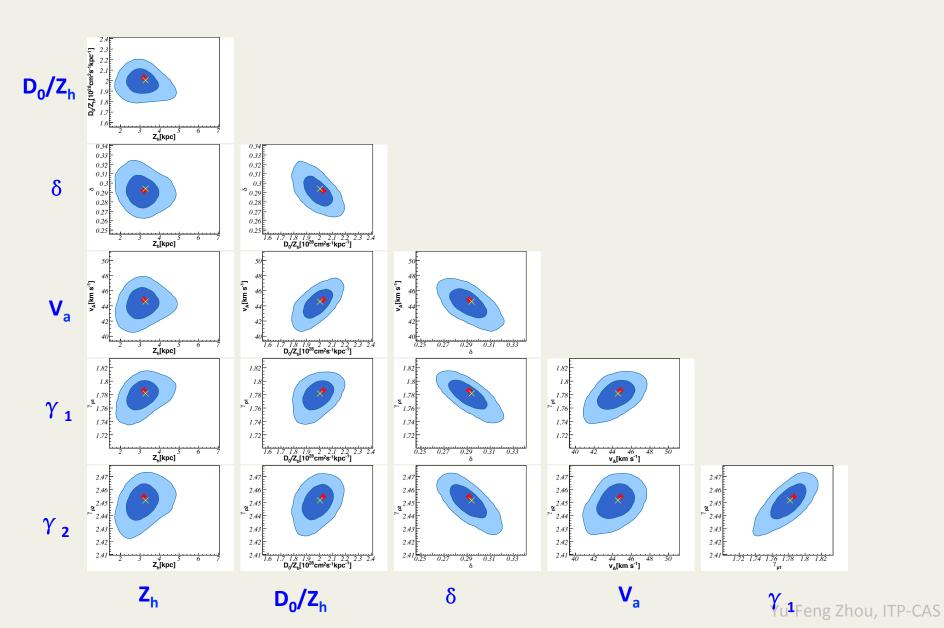
with 2.6x10⁴ MCMC samples

Trotta, 1011.0037 Fit B/C+¹⁰Be/⁹Be

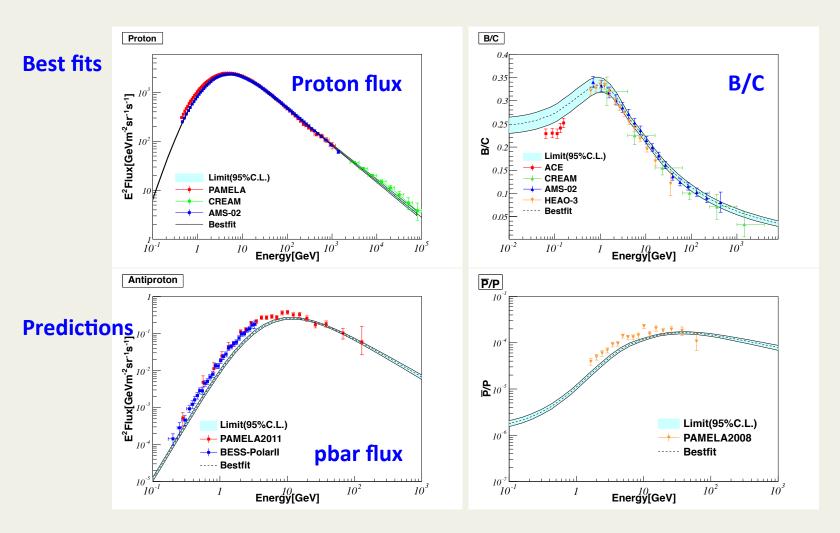
Quantity	Prior	Best-fit	Posterior mean and	Posterior 95%	Ref. [23]
	range	value	Standard deviation	range	
$Z_h(\mathrm{kpc})$	[1, 11]	3.2	3.3 ± 0.6	[2.1, 4.6]	5.4 ± 1.4
D_0/Z_h	[1, 3]	2.02	$2.00 {\pm} 0.07$	[1.82, 2.18]	(1.54 ± 0.48)
δ	[0.1, 0.6]	0.29	0.29 ± 0.01	[0.27, 0.32]	$0.31 {\pm} 0.02$
$V_a(\mathrm{km}\cdot\mathrm{s}^{-1})$	[20, 70]	44.7	44.6 ± 1.2	[41.3, 47.5]	38.4 ± 2.1
γ_{p1}	[1.5, 2.1]	1.79	$1.78 {\pm} 0.01$	[1.75, 1.81]	1.92 ± 0.04
γ_{p2}	[2.2, 2.6]	2.46	2.45 ± 0.01	[2.43, 2.47]	2.38 ± 0.04


 D_0/Z_h is precisely determined (err <5%)

$$\frac{D_0}{Z_h} = (2.00 \pm 0.07) \text{ cm}^2 \text{s}^{-1} \text{kpc}^{-1}.$$

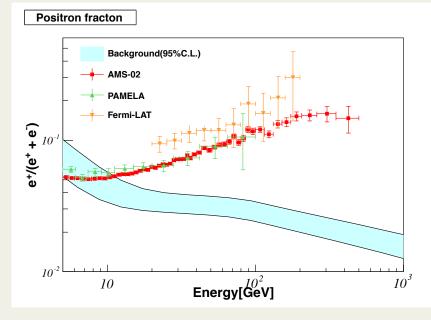

 Z_h is determined with err up to ~ 20% (smaller than the fit to B/C+¹⁰Be/⁹Be)

$$Z_h = 3.3 \pm 0.6 \text{kpc}$$

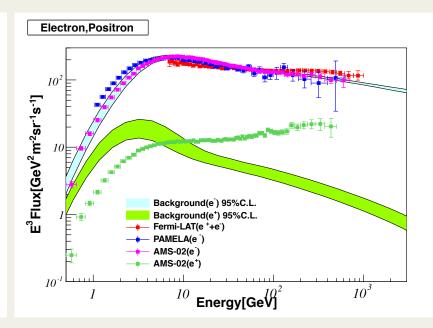

1D posterior PDFs

Correlations between parameters

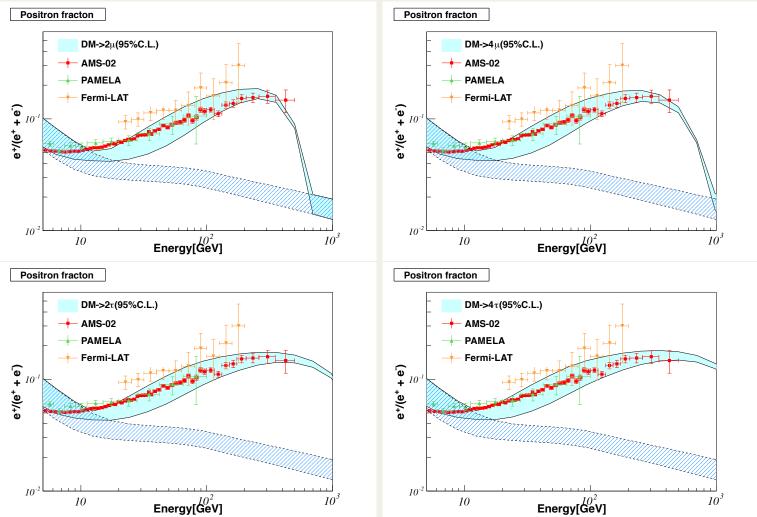
Best-fits & predictions for backgrounds



antiproton/proton


Uncertainties in positron backgrounds

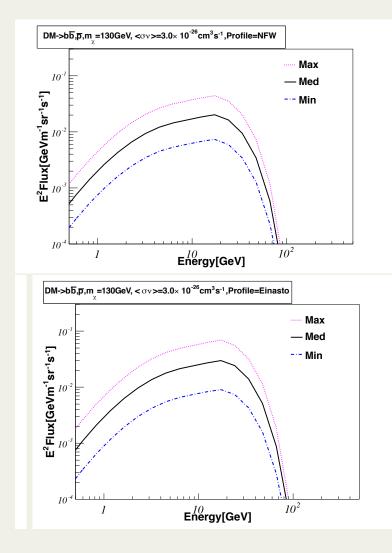
Through scanning the whole parameters space allowed at 95%CL, the uncertainties of the backgrounds are obtained


Positron fraction

electron and positron fluxes

Uncertainties in positron fraction from DM annihilation

Typical uncertainties are within O(2), much smaller above 200 GeV Previous analyses: uncertainties ~O(10), e.g T.Delahaye, etal, arXiv:0712.2312, ITP-CAS

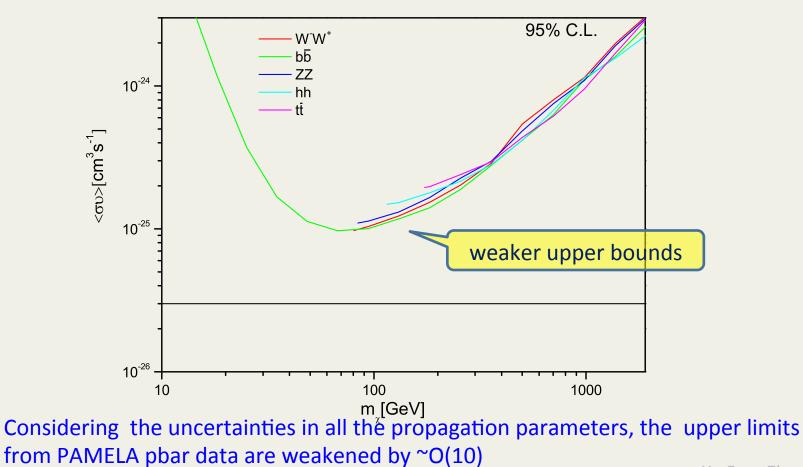

Uncertainties in antiproton flux from DM annihilation

• Reference propagation models minimal, median and maximal fluxes

parameters	Min	Med	Max
$Z_h(\mathrm{kpc})$	1.8	3.2	6.0
D_0/Z_h	1.96	2.03	1.77
δ	0.30	0.29	0.29
$V_a(\mathrm{km}\cdot\mathrm{s}^{-1})$	42.7	44.8	43.4
γ_{p1}	1.75	1.79	1.81
γ_{p2}	2.44	2.45	2.46

• At 95% CL, the difference between min and max configuration is within O(10).

Previous analyses: uncertainties ~O(100), e.g. F.Donato, etal, astro-ph/0306207



Upper limits from PAMELA

Global fit including PAMELA antiproton data

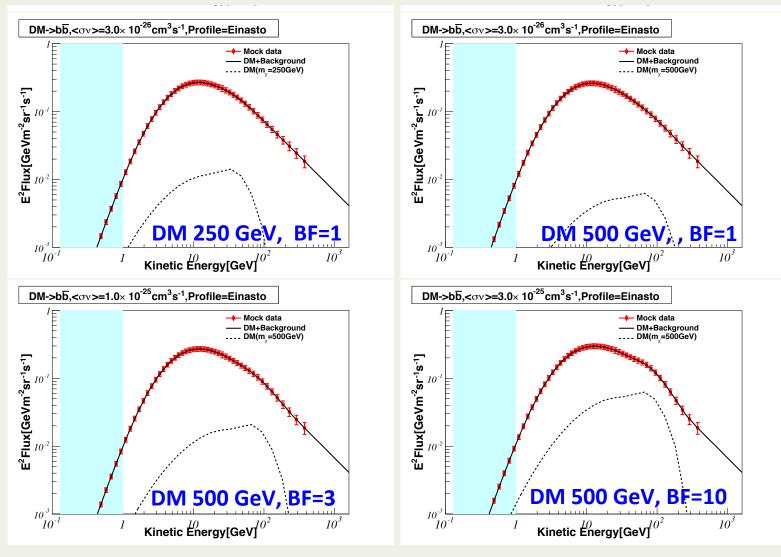
• Method: Bayesian updating

$$P(\boldsymbol{\theta}',\boldsymbol{\theta}|D') = \frac{\mathcal{L}(D'|\boldsymbol{\theta}',\boldsymbol{\theta})\pi(\boldsymbol{\theta}')\tilde{\pi}'(\boldsymbol{\theta})}{\int \mathcal{L}(D'|\boldsymbol{\theta}',\boldsymbol{\theta})\pi(\boldsymbol{\theta}')\tilde{\pi}(\boldsymbol{\theta})d\boldsymbol{\theta}'d\boldsymbol{\theta}},$$

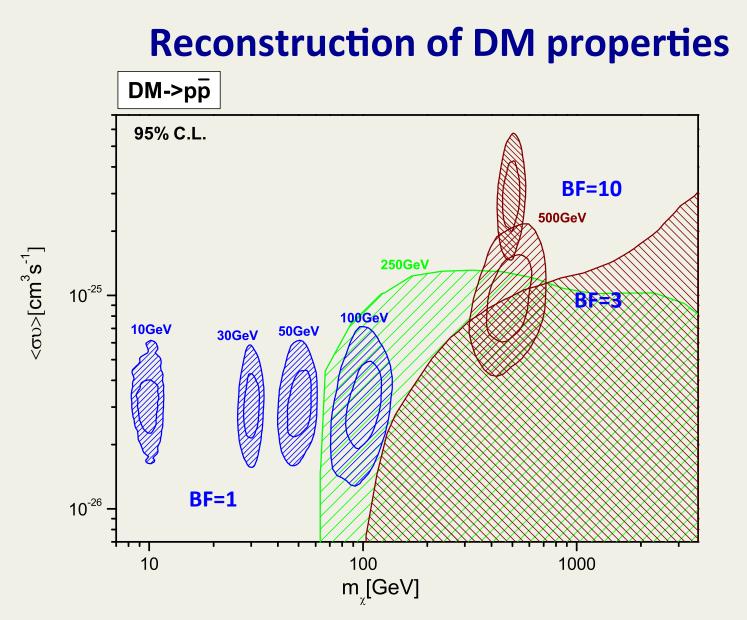
Sensitivity of AMS-02 on antiproton

• Number of events, uncertainty

$$N = \epsilon a(T_i)\phi(T_i)\Delta T_i\Delta t, \qquad \Delta \phi(T_i)_{\text{sta}} = \sqrt{\frac{\phi(T_i)}{\epsilon a(T_i)\Delta T_i\Delta t}}.$$


$$\Delta\phi(T_i) = \sqrt{\Delta\phi(T_i)_{\rm sta}^2 + \Delta\phi_{\rm sys}^2}. \qquad \Delta\phi_{\rm sys} = 8\%.$$

- Acceptance, efficiency


 a(T) =0.0147 m²
 (1-11 GeV)
 0.03 m²
 (1-150 GeV)
 ε=90%
 (> 1 GeV)
- Data binning, according to AMS-02 rigidity resolution

$$\frac{\Delta R}{R} = 0.000477 \times R + 0.103. \qquad \frac{\Delta T}{T} = \left(\frac{T + 2m_p}{T + m_p}\right) \frac{\Delta R}{R},$$

AMS-02 antiproton mock data

 $\langle \sigma v \rangle = \mathrm{BF} \times (3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1})$

The cross section can be reconstructed within O(2), masses O(30%) at 95% for light DM (<100 GeV) and BF=1. Reconstruction is possible for heavy DM with large BF Yu-Feng Zhou, ITP-CAS

- Accurate prediction for DM-induced CR signals requires better understanding of the propagation of CR particles.
- We determine the major CR propagation parameters use the AMS-02 data alone (B/C ratio + proton flux).

e.g. the uncertainty in D0/Zh is within 5%.

- The uncertainties in positron fraction is constrained to O(2) and that in antiproton is ~O(10), both are significantly smaller than the analyses prior to AMS-02.
- The projection for AMS-02 sensitivity on antiproton for DM <200 GeV with thermal ov, the cross section can be reconstructed within ~O(2) for 3-year data taking.

