The Latest Daya Bay Results in Neutrino Oscillation and Reactor Flux Studies

Wei Wang (on behalf of Daya Bay)

Sun Yat-Sen University / College of William&Mary

2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck, Hsinchu, Oct 9, 2014

- A review of the Daya Bay experiment
- The first oscillation results of the complete Daya Bay
- • θ_{13} measurement using neutron capture on hydrogen events
- Oscillation searches at $\Delta m^2 \sim 0.01$ -0.1 eV² scales
- Reactor flux and spectrum results
- Summary & conclusion

230 collaborators

ation

~230 collaborators

tional Effort

•

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci and Tech, CGNPG, CIAE, Dongguan Polytech, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, Nationa Taiwan Univ., National Chiao Tung Univ., National United Univ.

North America (16) 17

Brookhaven Natl' Lab, Cal Tech, Cincinnati, Houston, Illinois Illistitute of Technology, Iowa State, Lawrence Berkeley Natl' Lab, Princeton, Rensselaer Polytech, UC Berkeley, UCLA, Wisconsin, William & Mary Virginia Tech, Illinois, Siena College

Europe(2)(2)

Charles Univ. Dubna JINR, Dubna, Russia; Charles University, Czech Republic

South America (\$)

Catholic Univ. of Chile

~230 collaborators

An Inter

Neutrino Oscillation Physics using Reactors

• Two practical ways to measure
$$\theta_{13}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = 1 - 4 \sum_{i < j} |V_{\alpha j}|^2 |V_{\beta i}|^2 \sin^2 \frac{\Delta m_{ji}^2 L}{4E}$$

- Appearance experiments $v_{\mu} \rightarrow v_{e}$ depend on 3 unknown parameters θ_{13} , δ_{CP} and mass hierarchy
- Short-baseline reactor experiments $v_e \rightarrow v_e$ depend on 2 unknown parameters θ_{13} and mass hierarchy, with mass hierarchy has little effect

Design of the Daya Bay Experiment

Time Correlation Detection of Reactor Antineutrinos

Correlated Signals

- Powerful background suppression
- Well-defined targets: captures generate lights in LS zones and 8MeV delayed signals only from the Gd zone

Daya Bay Progresses since Summer 2011

- A. Two-detector data taking checking "identical" detectors, 9/23/11 12/23/11, [90 days]
 - Side-by-side comparison of 2 detectors, <u>NIM A 685, 78-97 (2012)</u>
- B. Partial Daya Bay six-detector data taking 12/24/11 7/28/12, [217 days]
 - *θ*_{13'} <u>PRL. 108, 171803 (2012)</u>, [55 days]
 - < θ_{13'} <u>CPC 37, 011001 (2013)</u>, [139 days]
 - θ₁₃ & Δm²ee, <u>PRL. 112, 061801 (2014)</u>, [217 days]
 - NEW: Daya Bay reactor antineutrino flux analysis (tomorrow)
 - NEW: θ_{13} using neutron captures on H [217 days]
 - NEW: sterile neutrino searches [217 days]
- C. Shutdown, 8-detector completion and special calibrations
 - Calibration with the manual calibration system, special sources, and reconfiguration of Am-C sources in far site detectors

D. Complete Daya Bay 8-detector data taking since 10/19/12

This NEW oscillation analysis combines both 6-AD and 8-AD till Nov 28, 2013, Periods B and D, 621 days of data taking

- A NEW energy model, ~1% uncertainty
- \checkmark NEW: the most precise $\theta^{}_{13}$ and the most precise Δm^2_{ee}

Improvements in Relative Energy Responses

- We have improved our energy reconstruction by more careful controls of channel quality and corresponding corrections
- The relative energy scale uncertainty between 8 detectors is now within 0.2%, improved from 0.35% in 2013 which was between 6 detectors

Improved Energy Non-linearity Model

- Daya Bay absolute energy scale uncertainty consists of two components: the electronic non-linearity and the liquid scintillator non-linearity
- Electronic non-linearity checked by FADC
- (Almost) all mono-energetic gammas and ¹²B beta data in the right energy range constrain the LS non-linearity

The Latest Daya Bay Oscillation Analysis

• The most precise Δm_{ee} measurement, The current analysis is designed to be (almost) comparable to long-baseline muon beam experiments

•

based on the near-site observed spectra

independent of any reactor flux models

Daya Ba

The Significance of Δm^2_{ee}

assuming Normal Mass Hierarchy

Why is the e-type Δm^2 Measurement Interesting?

$$P(\bar{\nu_e} \to \bar{\nu_e}) = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$
$$= 1 - 2s_{13}^2 c_{13}^2 - 4c_{13}^4 s_{12}^2 c_{12}^2 \sin^2 \Delta_{21} + 2s_{13}^2 c_{13}^2 \sqrt{1 - 4s_{12}^2 c_{12}^2 \sin^2 \Delta_{21}} \cos(2\Delta_{32} \pm \phi)$$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - P_{21}^{\mu} - \cos^2 \theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{(\Delta m_{32}^2 \pm \phi)L}{4E}$$

Qian et al, PRD87(2013)3, 033005

FIG. 6: The dependence of effective mass-squared difference $\Delta m_{ee\phi}^2$ (solid line) and $\Delta m_{\mu\mu\phi}^2$ (dotted line) w.r.t. the value of δ_{CP} for $\bar{\nu}_e$ and ν_{μ} disappearance measurements, respectively.

TABLE II: Simple fitting for mass splitting Δm_{32}^2 and Δm_{31}^2 using Eqs. (11), (12), (16), and (19) in NH (or (20) in IH) as constraints. The corresponding 2-tailed p-values increase from that in Table I. Here the slight preference for normal hierarchy remains.

	Fit in normal hierarchy	Fit in inverted hierarchy
Δm^2_{32}	$(2.46 \pm 0.07) \times 10^{-3} \text{ eV}^2$	$-(2.51\pm0.07)\times10^{-3}~{\rm eV}^2$
Δm_{31}^2	$(2.53\pm0.07)\times10^{-3}~{\rm eV^2}$	$-(2.44 \pm 0.07) \times 10^{-3} \text{ eV}^2$
$\chi^2/{\rm DoF}$	0.96/2	1.21/2
p-value	62%	55%

Zhang&Ma, arXiv:1310.4443

The Daya Bay Detection Efficiency

Reactor

Antineutrino detection (IBD positron) $S(E_{e^+}) = S(E_{\overline{v}_e})\sigma_{IBD}(E_{\overline{v}_e})N_p \cdot t_{live} \cdot \varepsilon_{m \cdot \mu} \cdot \varepsilon \cdot \text{Detector Response}$

Detection efficiency $\boldsymbol{\epsilon},$ and its uncertainty

	Efficiency	Correlated	Uncorrelated	
		Uncertainty	Uncertainty	
Target protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy cut	92.7%	0.97%	0.12%	
Prompt energy cut	99.81%	0.10%	0.01%	
Capture time cut	98.70%	0.12%	0.01%	
Gd capture ratio	84.2%	0.95%	0.10%	
Spill-in correction	104.9%	1.50%	0.02%	
Combined	80.6%	2.1%	0.2%	

Detector efficiency is obtained from Full Detector MC simulation which is tuned with various data. Correlated uncertainties are obtained by comparison of MC and data.

An improved evaluation of the detection efficiency regarding Gd capture ratio, delay energy cut and spill-in effect, has been performed.

Detector Response is developed for spectral measurement.

The Daya Bay Flux Normalization Measurement

Measured IBD events (background subtracted) in each detector are normalized to $cm^2/GW/day$ (**Y**₀) and $cm^2/fission$ (σ_f).

3-AD (near sites) measurement:

 $Y_0 = 1.553 \times 10^{-18}$

 $\sigma_f = 5.934 \times 10^{-43}$

Compare to reactor flux models: Measured / Predicted IBD candidates

Data/Prediction (Huber+Mueller) 0.947 ± 0.022

Data/Prediction (ILL+Vogel) 0.992 ± 0.023

	Uncertainty
statistics	0.2%
$sin^22\theta_{13}$	0.2%
reactor	0.9%
detector efficiency	2.1%
combined	2.3%

Daya Bay Absolute Flux Measurement and Others

Daya Bay's reactor antineutrino flux measurement is consistent with previous short baseline experiments.

• Global comparison of measurement and prediction (Huber+Mueller):

- Effective baseline of Daya Bay: L_{eff} = 573m
 - Flux weighted detector-reactor distances of 3 ADs in near sites only.
- Effective fission fractions α_k of Daya Bay ²³⁵U: ²³⁸U: ²³⁹Pu: ²⁴¹Pu = 0.586: 0.076: 0.288: 0.050
 - Mean fission fractions from 3 ADs in near sites only.

How Consistent between Calculation and Daya Bay Observation

- We would like to check whether the observation of Daya Bay is consistent with flux spectrum calculation
- Considering all the correlations and the best-fit theta13

(A) Spectral comparison of data and prediction (Huber +Mueller)
 (P-value=0.015, 2.4σ)

(B) χ^2 contribution of each bin, evaluated by:

$$\widetilde{\chi}_{i} = \frac{N_{i}^{obs} - N_{i}^{pred}}{|N_{i}^{obs} - N_{i}^{pred}|} \sqrt{\frac{1}{2} \sum_{j} (\chi_{ij}^{2} + \chi_{ji}^{2})}$$

where $\chi_{ij}^{2} = (N_{i}^{obs} - N_{i}^{pred})(V^{-1})_{ij}(N_{j}^{obs} - N_{j}^{pred})$

(C) P-value of $\Delta \chi^2$ /ndf in a certain energy window (e.g. 1 MeV)

Introduce N (# of bins) nuisance parameters with no pull terms to oscillation fitter.

Expect the χ^2 difference after introducing the N nuisance parameters follows a χ^2 distribution with N-1 dof.

Spectrum Unfolding

- Antineutrino spectrum from measurement
 - Unfold the measured positron spectrum of 3 ADs in near Halls

The Daya Bay Unfolded Flux Spectrum

- ♦ Extract a generic observable reactor antineutrino spectrum $S_{obs v}(E_v)$:
 - It supplies data outside [2, 8] MeV and could be used for flux and spectrum prediction.

Normalize the unfolded spectrum to $cm^2/fission/MeV$.

$$S_{obs_\bar{v}_e}(E_{\bar{v}_e}) = \frac{S_{unfolded}(E_{\bar{v}_e})}{P_{eff}(E_{\bar{v}_e},L) \cdot N_p \cdot F_{total}}$$

where

 N_p is proton number per unit target mass; $P_{eff}(E_{\overline{v}_e},L)$ is suvival probability of \overline{v}_e weighted by flux; F_{total} is total number of fissions of all reactors.

$$S_{pred_{\bar{v}_e}}(E) = \left(\sum_k \alpha_k S_k(E) + c^{ne}(E) + SNF(E)\right) \cdot \sigma_{IBD}(E)$$

where

 α_k are the effective fission fractions of Daya Bay

- Compare Daya Bay spectrum $S_{obs_v}(E_v)$ and Huber+Mueller Prediction $S_{pred_v}(E_v)$:
 - Same rate deficit as flux measurement, and same shape deviation structure as in comparison of positron spectrum.

Sterile Neutrino Signal in Daya Bay

- A minimum extension of the 3- ν model: 3(active) + 1(sterile)- ν model
- Search for a higher frequency oscillation pattern besides $|\Delta m^2_{ee}|$

Summary and Conclusion

→ Most precise sin²2 θ_{13} , ~6%; most precise Δm_{ee}^2 , ~4%

➡ An independent oscillation analysis using n-captures on H carried out

- ➡A search of light sterile neutrino states carried out utilizing Daya Bay's unique multibaselines, independent of reactor flux models
- ➡The Daya Bay detector energy non-linearity ~1%, a very meaningful precision for future experiments
- Daya Bay reactor flux normalization measurement is consistent with previous data.
 - Spectrum inconsistent with calculation.

SYSU-IHEP School of HEP

Daya Bay Measurement of IBD Rates

What the Discrepancy is or is Not

- The events are reactor power correlated & time independent. X
- The events match all IBD event characteristics: X
 - Neutron capture time and distance distributions, prompt event + position distribution. etc.
 - Disfavors unexpected backgrounds +
- ¹²B spectrum does not have local structure at [4, 6] MeV. ×
 - Disfavors electronics and nonlinear energy model distortion
- Extending the reactor model by adding a single β -branch or X mono-energetic line cannot remove the local discrepancy.

Add a gamma line (5 MeV) in reactor model

and IBD events in [3, 4] MeV.

Wei Wang

The 6AD and 8AD Combined Data

Data Summary

	0	Data S	umma	ary	Dr.	
= 6-AD Period	AD1	AD2	AD3	AD4	AD5	AD6
IBD candidates	101998	103137	93742	13889	13814	13645
DAQ live time(day)	190.989		189.623		189.766	
ε_{μ}	0.8234	0.8207	0.8576	0.9811	0.9811	0.9808
ε_m	0.9741	0.9745	0.9757	0.9744	0.9742	0.974
Accidentals(/day)	9.53 ± 0.10	9.29 ± 0.10	7.40 ± 0.08	2.93 ± 0.03	2.87 ± 0.03	2.81 ± 0.03
Fast neutron $(/day)$	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01	
9 Li/8 He(/day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14	
AmC correlated(/day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12	0.22 ± 0.1	0.21 ± 0.1	0.21 ± 0.09
$^{13}C(\alpha,n)^{16}O(/\mathrm{day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate(/day)	652.38 ± 2.58	662.02 ± 2.59	580.84 ± 2.14	73.04 ± 0.67	72.71 ± 0.67	71.88 ± 0.67
side-by-side ibd rate ratio	0.985 =	E 0.005		1		

8-AD Period

_ • • • • • • • • • • • • • •	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates	202461	206217	193356	190046	27067	27389	27032	27419
DAQ live time(day)	374.447		378.407		372.685			
$arepsilon_{\mu}$	0.8255	0.8223	0.8574	0.8577	0.9811	0.9811	0.9808	0.9811
$arepsilon_m$	0.9746	0.9749	0.9759	0.9756	0.9762	0.976	0.9757	0.9758
Accidentals(/day)	8.62 ± 0.09	8.76 ± 0.09	6.43 ± 0.07	6.86 ± 0.07	1.07 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	1.26 ± 0.01
Fast $neutron(/day)$	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
9Li/8He(/day) 2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14				
AmC correlated(/day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.02
$^{13}C(\alpha,n)^{16}O(/\mathrm{day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate(/day)	659.58 ± 2.12	674.36 ± 2.14	601.77 ± 1.67	590.81 ± 1.66	74.33 ± 0.48	75.40 ± 0.49	74.44 ± 0.48	75.15 ± 0.49
side-by-side ibd rate ratio	o 0.978 ± 0.004		1.019 =	± 0.004				

Expected: AD1/AD2 = 0.982; AD3/AD8 = 1.012

Daya Bay Detector Calibrations

- Three automated calibration units (ACU) on each detector, 2 for the Gd-LS volume and 1 for the LS one, carry out weekly calibrations (vertical scans)
 - Sources: ~100Hz $^{68}Ge(e^+)$, ~20Hz ^{60}Co , ~0.7Hz $^{241}Am\text{-}^{13}C(n)$, and a LED diffuser ball
- Special calibration efforts in Summer 2012
 - Manual calibration system (MCS) with 4π scan was installed to further understand detector energy responses using Pu-C and Co sources
 - One detector's ACUs were loaded with ¹³⁷Cs, ⁵⁴Mo, ⁴⁰K, Pu-C, and ²⁴¹Am-Be sources and thorough scanned vertically
 - A stronger ²⁴¹Am-¹³C is placed on a detector to understand the induced background better

✓ The Daya Bay absolute energy scale uncertainty has reached ~1% after a thorough analysis of the collected calibration data

or active water shield and RPC Veto/Reduce Cosmic/Environmental Backgrounds

- ~100m-350m overburdens for 3 sites
- Two independent active muon veto systems: RPC; Water Cherenkov is separated into inner (IWS) and outer (OWS) ones to improve the muon efficiency
- Water Cherenkov detectors also shields the environmental gamma radiations
 - >2.5 m thick water in each direction

$(E_{e^+}) = S(E_{\overline{v}_e})\sigma_{IBD}(E_{\overline{v}_e})N_p \cdot t_{live} \cdot \varepsilon_{m \cdot \mu} \cdot \varepsilon \cdot \text{Detector Response}$

- 1. MC predict the deposit energy
- 2. Apply non-linearity model
- **3.** Apply the energy resolution model

How Identical Are Daya Bay "Identical" Detectors?

IBD Candidates and Backgrounds

- First apply flasher cuts to clean up data
- Muon veto cuts get rid of cosmogenic products
- IBD energy&time cuts
 - Prompt energy cut; delayed energy cut
 - Time correlation cut to pick out IBD pairs
- Background events contain accidental ones and three other correlated types: cosmogenic, calibration source Am-C and $^{13}C(\alpha, n)^{16}O$ backgrounds

Flux Model Independent Near-Far Prediction

From the

- relative reactor core power info
- experimental layout geometry

it is possible to determine what fraction of events in each near detector at each true energy bin originate from each core.

Each of these components is then individually extrapolated to the far site

All reactor and detector correlated systematics, including the absolute flux and shape uncertainties, **cancel to first order.**

One Way to Reach Neutrino Mass Hierarchy

FIG. 6: The dependence of effective mass-squared difference $\Delta m_{ee\phi}^2$ (solid line) and $\Delta m_{\mu\mu\phi}^2$ (dotted line) w.r.t. the value of δ_{CP} for $\bar{\nu}_e$ and ν_{μ} disappearance measurements, respectively.

of Daya Bay

Completed Daya Bay

Nice Pictures on Various Activities

Final two detectors installed, operating since Oct. 2012.

4π detector calibration in Sep. 2012.

Wei Wang